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Analysis on a Minimum Infinity-norm Solution for Kinematically
Redundant Manipulators
Insoo Ha and Jihong Lee

Abstract: In this paper, at first, we investigate existing algorithms for finding the minimum infinity-norm solution of consistent linear
equations and then propose a new algorithm. The proposed algorithm is intended to includes the advantages of computational efficiency
as well as geometric explicitness. As a practical application example, optimum trajectory planning for redundant robot manipulators
is considered. Also, an efficient approach avoiding discontinuity in trajectory is proposed by resolving the non-uniqueness problem
of minimum infinity-norm solution. To be specific, the proposed method for checking possible discontinuity does not need any other
algorithms in checking the possibility of discontinuity while previous work needs specially designed checking courses. To show
the usefulness of the proposed techniques, an example calculating minimum infinity-norm solution for comparing the computational

efficiency as well as the trajectory planning for a redundant robot manipulator are included.

Keywords: minimum-infinity norm solution, robot inverse kinematic solution, robot trajectory planning

I. Introduction

The redundant manipulator is a manipulator which has more
than the the number of required Degree of Freedom(DOF) of
given task. In this case, ‘redundant’ imposes the meaning of
‘flexibility’ because excessive joint D.O.F. enables the manipu-
ator to perform extra tasks while executing main task. On the
other hand, ‘redundant’ is a synonym of ‘cumbersome’ because
this manipulator doesn’t have a unique solution for a specified
task and needs some special techniques for redundancy reso-
lution. So there have been various methods for finding an op-
timal solution for kinematically redundant manipulators in the
field of robotics trajectory planning{1]. So far, almost all re-
dundancy resolution techniques have hinged on the weighted
pseudo-inverse based on minimum two-norm, or minimum en-
ergy solutions[2], [3]. But recently some researches report the
limitations of the minimum energy solutions in some applica-
tions where individual limits for each component are more im-
portant than minimizing sum of all the components. So mini-
mum infinity-norm solution methods are being adopted in tra-
jectory planning of redundant robot manipulators. The mini-
mum infinity-norm solution method can be applied to the re-
dundancy resolution with consideration of individual variables.
Unfortunately, there has been no single method that computes
the minimum infinity-norm solution in closed form. All the ex-
isting methods are based on numerical approach.

In applying the minimum infinity-norm solution to robot tra-
jectory planning, one of the critical problem is that the opti-
mal solution may not be unique in some cases, so the resultant
trajectory may be discontinuous. Also, the fact that, currently,
there is no work computing the infinity-norm solution in closed-
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form make the analysis of this kind of solution difficult.

There have been some prominent works on computing min-
imum infinity-norm solution. Cadzow[4] proposed a structural
algorithms for obtaining a minimum infinity-norm solution and
also proposed more efficient version in [5]. But since these
algorithms started from the mathematical viewpoint, one can
hardly understand the geometry of Cadzow’s algorithms. Shim
and Yoon[6] investigated the geometry of a minimum infinity-
norm solution and proposed a new algorithm based on geomet-
rical approach. Even though the algorithm is less computation-
ally efficient than Cadzow’s method, it established the geometri-
cal analysis for the minimum infinity-norm solution. Due to the
lack of closed form solution, all the existing minimum infinity-
norm solution method suffer from the non-uniqueness charac-
teristics. Regarding this non-uniqueness characteristic of the
minimum infinity-norm solution, Ian[9] presented a way for in-
dexing distance from that non-uniqueness situation. Using this
index he applied the minimum infinity-norm solution technique
to trajectory planning of redundant robot manipulators, which
guarantees continuous joint velocities.

In this work, we investigate the intrinsic characteristic of min-
imum infinity-norm solution and also investigate the equiva-
lence between two different approach, purely algebraic method
and geometrical method which correspond to Cadzow’s algo-
rithm and Shim’s algorithm respectively. After summarizing
each step of both algorithms, we investigate the equivalence of
the two algorithms. Based on the equivalence, we propose a
new algorithm for finding a minimum infinity-norm solution,
which takes advantages from both conventional algorithms. To
be specific, the proposed algorithm doesn’t need Haar condi-
tion which has to be satisfied in applying Cadzow’s algorithm,
and the algorithm is computationally more efficient than Shim’s
algorithm.

The non-unique characteristic of the minimum infinity-norm
solution is also considered in this paper. Noting that Ian’s mea-
sure for non-uniqueness has to be computed from a procedure
totally different from the procedure computing the minimum
infinity-norm solution, we devise a measure that can be cal-



Transactions on Control, Automation, and Systems Engineering Vol. 4, No. 2, June, 2002 131

culated during the proposed procedure for minimum infinity-
norm solution as an byproduct. By utilizing this measure we
resolve the discontinuity problem in redundant robot trajectory
planning. The proposed method overcomes the disadvantage of
Ian’s method which mistakenly computes wrong measure for
non-uniqueness at some situation. While Ian’s method takes all
the hyperplane into consideration in deciding the non-unique
solution, the proposed method checks only the hyperplane that
plays crucial role in computing the minimum infinity-norm so-
lution.

The next chapter briefly summarize the previous works. In
chapter 3, we investigate the relations between the previous two
approaches in the geometrical viewpoint, and propose a new
algorithm for finding a minimum infinity-norm solution accom-
panied with some examples. A method for avoiding discontinu-
ity of minimum infinity-norm solution for trajectory planning
of redundant robot manipulators is proposed and is applied to
some examples with 4 degrees of freedom robot. And then we
conclude the work with main contribution and future research
direction.

II. Related works
Now we will consider the system of m linearly independent
equations in 7 unknowns

Az =y, M

where A is an m X n matrix of rank m with n > m, y is a given
m X 1 vector, and z is an n X 1 vector. Since the rank of A is
m and n > m, it follows that this system of equations has an
infinite number of solutions. We will be concerned with finding
a solution from this solution set which minimizes

| 2 o= max{[ z(1) [,[2(2) [,---,[x(n) ] (@

This solution is called a minimum infinity-norm solution.

In robotic and mechatronic system, the variables to be opti-
mized often represent physical system parameters, such as ac-
tuator torques, forces, currents, or velocities. In the case of re-
dundant system, the optimization procedure will change these
parameters in such a manner as to optimally “share” the re-
sources while still achieving the desired result. Physical system
has its limitation of each parameter. So the optimal solution
cannot exceed its limit such as motor torque bounds or motor
speed bounds. The minimum infinity-norm solution has a good
feature for the above situation. The infinity norm gives strict
attention to the magnitude of individual variables, rather tman
“lumping” them into optimization constraint. For a given op-
timal minimum infinity-norm sofution, if any element of that
solution exceeds the associated variable limit, then it is not pos-
sible to achieve the desired task given the current joint vari-
able limits. The minimum infinity norm solution attempts to
distribute the work between all available resources, minimizing
each individual variable’s contribution as far as possible.

The following sections deal with the well-known methods for
finding a minimum infinity-norm solution.

1. Cadzow’s algorithm

This section deals with the algorithm of Cadzow{4]. His al-
gorithm is computationally efficient. The following two theo-
rems play an important role in the algorithm.

Theorem 1 : Given the system of m consistent equations in
n unknowns

Az =y 3
then

min ||z]|ec = max y'u
Az=y la’uli<1

Furthermore, an optimal z and A'u are aligned. Here A’
denotes the transpose of the m x n matrix A.

Theorem 2 : Given the m X n matrix A with rank m and
the m x 1 vector y, there exists an m x 1 vector u° such that

/1 0 / ’
Yyu = max Yu= max U 4)
A7l <1 A ully=1

and at least m — 1 components of A'u® are zero, that is

aju’ =0 fori € Q= [ir,i2, - ,im-1] With1 <ix <m
®

where a; denotes the i-th column vector of matrix A. Fur-
thermore, the set of vectors

[ailaaigy"'aaim_1] (6)

are linearly independent

Proofs of the above theorems are not covered in this paper.
More detailed information is available in [4]. This algorithm
uses the fact that a solution to the dual problem is orthogonal
to m — 1 linearly independent columns of matrix A. So one
may then generate a set of m x 1 vectors {u;} each of which
is orthogonal to a specific set of m — 1 linearly independent
columns of A and is normalized in length so that || A’u;|j; = 1
as is required in the theorem 2. And he may find the solution to
the dual problem «° € U for which

y’uo = max {:ty/ul, :!:y'uz, R Z//UN}

I

max {|y'wl, [y’ ual, -, [unl}. @

Next, using the alignment relationship between A'y° and z°
the solution x is determined as

2(i) = { (Y'u®)sgn[A'u]; if[A]; £0

oy if [A'u]; =0 ®)

The above summary is the main process of the Cadzow’s al-
gorithm. Now more systematic procedures including column
exchange algorithm that guarantees faster convergence to an op-
timal solution are presented as follows.

C-Step 1 : Select any set of m — 1 linearly independent
columns from matrix A to form the initial A; and therefore A,
matrices.

C-Step 2 : Determine a nonzero m x 1 vector v such that
Alv=0

C-Step 3 : Generate a feasible solution vector from this vec-

tor v, that is
_ [ s9nly'w)
v ( 45T > v ®

C-Step 4 : Calculate 3.

C-Step 5 : Calculate z; = (y'u)sgn[A5u]. Solve for z1,
where A;z1 = y — (y'u) Aasgn][Ajul.

C-Step 6 : Check for alignment between A’y and z, that is:
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(@) If ||z1]loo < y'u, then A’y and z are aligned and z =

o is desired optimal solution.

(O If ||z1]|oo > y'u. then A'w and z are not aligned. Proceed
to next step.

C-Step 7 : Let 1 (p) denote any component of vector x; for
which | z1(p) |> y'u. The pth column vector of A; may then
be used in the exchange with A,. Typically, one will select that
p for which | z1(p) |= ||z1]co-

C-Step 8 : To determine the column vector from matrix Az
to be used in the interchange, one solves the set of m equations

Aty = (sgnlz1(p)])ep, and by =0 (10)

for the unique m x 1 vector v where e, is the (m — 1) x 1
vector defined by

N 1 fori=np,
e”(z)_{ 0 fori=1,2 - m—1,i%p D

and b is “any” vector not contained in the subspace spanned by
the column vectors of matrix A;. A natural choice for b would
be the current feasible solution vector u.
C-Step 9 : Next, the ratios 1/¢,’s are computed, where
1 [A)s

e |Abuls

for i=1,2,---,n—m+ 1. (12)

Let 1/e4 be the largest of these ratios.

C-Step 10 : Interchange column p of matrix A; with column
g of matrix A to form the new A; and A, matrices at the next
iteration. The integers p and g are those found at steps 7 and 9
respectively. The new m x (m — 1) matrix A1 has rank m — 1
since matrix A is assumed to satisfy the Haar condition'.

C-Step 11 : The feasible solution vector at the next iteration
is given by

__sgn(zq)
|A"2(u + gq) 1

o= [+ €47 (13)
Go to Step 4.
2. Shim’s aigorithm

In this section, we briefly introduce Shim’s algorithm[7].
This algorithm is based on the geometrical relationship between
the hypercube which is a set of points of the same infinity-norm
with z and the solution space of Az = y in n-dimensional
space. In the geometrical viewpoint, the solution is determined
when the boundary of the hypercube first touches the solution
space by increasing volume of the hypercube. This observa-
tion leads us to an important fact: as shown in Figure 1, when
n-dimensional hypercube containing the optimal solution z*
is mapped to m-dimensional polyhedron through A, y* corre-
sponding z* is on the boundary of the polyhedron.

More structured procedures of this algorithm are presented in
the following.

S-Step 1 : Let & = 1 and select an arbitrary vertex pSY of
the convex polyhedron by using

P = Az (14)

IThe m x n matrix A with n > m is said to satisfy Haar condition if
every set of m column vectors from A is linear independent.

Fig. 1. Geometrical situation of a minimum infinity-norm solu-
tion.

where £ is a vector representing an arbitrary vertex on the
unit n-box in R™.

S-Step 2 : Determine the points p; for7 = 1, -+, n. which
can be connected to the point pék) as

piqui; 7::15"'7’”' (15)
¢ = Eiz™® (16)
Ei = diag{1,---,1,~1,1,--,1} (17

S-Step 3 : Construct the possible boundary planes including
the vertex pék) as follows: ($-53.1) Select a set of m — 1 points
{pr1,P1y>" "+ PIm_, } from n points obtained at Srep 2 to form

the following m x (m — 1) matrix,

k
B=[pr, =5 pr, = 8" - pr._, -7 (8

with 1 < I; <nand I; # I; fori # j

(5-53.2) Determine the non-zero m X 1 vector u such that
BTw = 0. For the other n — m + 1 points which are not
selected at (S-S3.1), compute w; as

wi =u' (i =), i = Iy Imsr, -, In (19)

If all the values of w; have the same sign, then proceed to the
next step, Otherwise, go to ($-S3.1)

S-Step 4 : Solve the following equation to determine a =
la1,a2, -  am—1]7 and ¢

[B—][Z]=ﬂﬁ) 20)

f0<a; <1lforeveryi=1,---,m — 1, then the process
is finished. The desided optymal solution is

. 2
To= E{ﬂ?m +aa(qr, — %) + az(qr, —a®) + -

+ am-1(ar, s — 2™)} @n

Otherwise, go to next step.
S-Step 5 : The points p((]k) and z® are changed as follows:

m—1

p¢ ="+ - (or, - 2 @2)

i=1

m—1
2 0 = 2® 4+ N g (B, — Da 23)
i=1
where a; is zero, except having the value of 1 only for a; > 1. If
a;iszeroforalli = 1,---,m—1, then go to Step 1. Otherwise,
setk = k -+ 1 and go to Step 2.
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HIL A new algorithm for a minimum infinity-norm
solution
1. On the equivalence of the two algorithms

In this section, we will investigate the equivalence between
two algorithms referred to in 1. and 2. We investigate the
Shim’s method step by step in the geometrical viewpoint, and
show the Cadzow’s algorithm is composed of equivalent steps
of Shim’s method. Geometric interpretation of Shim’s method
is as follows.

At §-Step 1 and S-Step 2, the algorithm selects an arbitrary
vertex (! and its set of nearest neighbors?. This procedure
depicted in Figure 2. The nearest neighbor of (1) is defined as
a vertex only one of whose component has different sign with
2™ in R™. One can note from the Figure 2 that the points
which define a particular boundary hyperplane on polyhedron
in R™ space are “nearest neighbors” on the hypercube in R™
space.

©
x\ ?
T
S
I
Q
v
5
=

Fig. 2. A vertex and its nearest neighbors.

S-Step 3 is the process of selecting an arbitrary hyperplane
which is composed of (m — 1) nearest neighbor points, and then
this step determines whether this hyperplane is located inside of
a convex polyhedron or on the boundary of the convex polyhe-
dron in R™. Geometric interpretation of this case is shown in
Figure 3. In Figure 3, since vector w3 and ws have the same
direction(the same sign), hyperplane spanned by P; and P, is a
boundary hyperplane.

Fig. 3. A hypreplane that is on the boundary of polyhedron.

S-Step 4 is the process of determining coefficients of ver-
tices which compose a hyperplane selected in S-Step 3. If the
magnitude of any element of coefficient vector is out of range

2The set Q is a set of nearest neighbors of vector p, if ¢;, the component
—p(j) =1 }

of Q, satisfy following condition. ¢;(j) = { p(7) i

(0 < a; < 1) then the selected hyperplane is not valid. In fig-
ure 4, if the selected hyperplane is spanned by Py and P; then
the resultant solution vector is a linear combination of Py and
P, with coefficient of Py is larger than 1 and that of P is less
than 0. So the selected hyperplane is not valid. Note that fea-
sible solution must satisfy two conditions represented in S-53.2
and S-Step 4.

Ya

3

Yy
Fig. 4. A hypreplane that is not valid one(does not intersect with
vector y).

Now, let’s investigate Cadzow’s algorithm. At the first step,
the algorithm selects m — 1 linearly independent columns from
matrix A to form A;. And from C-Step 2 to C-Step 3, the al-
gorithm generates a feasible solution of dual problem u. which
is orthogonal to each column of A;. At this time, we can find a
similarity between selecting A; matrix in Cadzow’s algorithm
and selecting an hyperplane in Shim’s algorithm(S-Step 3). In
Shim’s algorithm a selected hyperplane is represented as equa-
tion (18). Let equation (18) be rewritten as '

k k k
B=[P11—p(<)) pfz'—p(()) pIm-l—p(() )]'

Then we can find each column of B can be expressed by a
column of matrix A.

PPy = Aqr —Agl? = A(qr,—¢{?) = £24¢e;, = +24,,

(24)
where ey, is a column vector all of its elements are zero except
I;-th is one.

So, we can say that selecting (m — 1) columns from matrix
A is the same procedure as selecting an (mn — 1)-dimensional
hyperplane spans origin and points which are columns of A1,
and this is also equivalent to selecting (mm — 1) points from the
set of n nearest neighbors in Shim’s algorithm.

But there is a little difference between the two algorithms. In
Shim’s method, one can determine whether a selected hyper-
plane is on the boundary of polyhedron or not in $-§3.2. But
there is no corresponding procedure in Cadzow’s method. In
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Cadzow’s method, there is no need to do that. At C-Step 5, one
can determine valid sign of z. This procedure guarantees that
the selected hyperplane can be placed on the boundary of poly-
hedron in R™. A; forms a hyperplane with origin, and product
of A5 and x> pushes this hyperplane somewhere in the polyhe-
dron. If the sign of x5 is valid, product of A, and z3 pushes the
hyperplane to a boundary of polyhedron. Because of this dif-
ference, Cadzow’s algorithm can save more computational time
than Shim’s algorithm.

Until now, we prove that two algorithms have the same pro-
cedure in which a boundary hyperplane is selected.

Now there is one more deterministic procedure for feasible
solution. In Shim’s algorithm, process of S-Step 4 determines
whether each element of vector a is in valid range (0 < a; <
1). On the contrary C-Step 4 checks whether infinity-norm of
z1 is greater than infinity-norm of 2. These two procedures
are seemed to be totally different with each other. But there is
a relationship between these two procedures. If any component
of corresponding coefficient vector a is out of range, the vector
y in equation (3) has no intersection with a selected hyperplane
in R™. Because mapping of equation (3) is linear, the solu-
tion will be out of hypercube in R™. So infinity-norm of z; is
greater than infinity-norm of z,. Figure 5 shows the geometric
situation of this case.

X

Fig. 5. An example of selecting an incorrect hyperplane and its
resultant situation in R™.

Finally both algorithms are summarized in the same structure
as follows. At first, an (m — 1)-dimensional hyperplane is se-
lected. And then we check whether the selected hyperplane is
on the boundary of polyhedron or not. At last, a checking pro-
cedure whether the selected hyperplane intersects the vector y
in a valid region is followed.

2. A new algorithm

In this section, we’ll present a new method for finding a min-
imum infinity-norm solution. The basic idea is based on the
following theorem.

Theorem 3 : Given the system of m consistent equations in
n unknowns

Ax =y 25)

there exist at least one minimum infinity-norm solution vector
and its n — m + 1 components have the same magnitude as the
infinity-norm of the optimal solution.

Proof: Let Q be an n x 2™ matrix whose column compo-
nents compose vertices on a hypercube @ in R™. Then A maps
@ to an m-dimensional, closed, convex polyhedron I'. Note that
every facet, edge or ridge on Q can be represented as a set of

points which are composed of a vertex and its nearest neigh-
bors. Because A is a linear transformation, every face of I is
composed of vertices descended from nearest neighbors in Q.

Let G be an m — 1 dimensional boundary hyperplane which
has intersection with Ay in R™. Remember that points which
define G on T" are “nearest neighbors” in Q.

Because G is defined by m vertices on I', the points which
generate those m vertices form the sub-matrix Qg. So the op-
timal solution z° can be represented as

2 = %Qca (26)

whereao e R™, Y i =1 0< o <11

As mentioned previously, column components of Qg are
nearest neighbors. So m — 1 row vectors of Qg are composed
of both +1 and —1, and the rest n — m + 1 row vectors are
composed of either 1 or —1.

For the above reason, n — m + 1 components of the optimal
vector z° can be represented as

i =+= (27)

and the rest m — 1 components of £ is

. 1 1
Ti=pi —YSPSy (28)

>

So we get that infinity-norm of z° is 1/A and magnitude of
n — m + 1 component of z° is the same with ||z°|| |

Fig. 6. Relationship between a hypercube and a minimum
infinity-norm solution.

Let’s give an example with geometric interpretation for easy

explanation. For 4 = 0.7 01 —16 and y =
20 -0.2 06

[=1.0 0.2]7, the resultant optimal solution for Az = y is given
as £ = [—0.1162 — 0.5404 0.5404]”. Figure 6 shows ge-
ometric relationship between the optimal solution and the hy-
percube in R®. As shown in the figure, the optimal solution is
placed between point g2 and gs3. Figure 7 also shows the resul-
tant polytope transformed by A from the hypercube shown in
figure 6. As expected, vector Ay intersect with the hyperplane
composed by points py and p3. Note that p; = Ag;.
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In this case, m = 2 so the two points ps and ps com-
pose a boundary hyperplane intersecting with Ay. And lin-
ear combination of corresponding points in R® make the op-
timal solution. Points gz = [0.5404 - 0.5404 0.5404] and
gz = [—0.5404 — 0.5404 0.5404)] are the nearest neighbors
to each other by which the optimal solution can be expressed.
As a result, only the first component of the optimal solution has
magnitude less than ||2%°|| .

251 x\m\\ .
15F / K .
1 5 .
/'
/ /
05t A A

086 / . 4
T/ /.
P
45k h / ]
pd®~.
2+ \'\\ / 4
T~ 7 /
25F ~._ " -
) L . L \M-é p8
3 2 1 D 1 2 3

Fig. 7. Relationship between a polytope and a minimum
infinity-norm solution.

Up to now, we have checked the validness of Theorem 3 in
geometrical sense with example. From now on we deal wiht the
main issue of this chapter using the above theorem. Since there
exist an infit number of solutions for equation (25), one may
express general representation of the solution for equation (25)
as the following form.

z=A"y+ Naz (29)

where A" is a pseudo-inverse matrix of A, N4 is nullspace of
A and z is an arbitrary vector in R*™™. Note that A%y is a
minimum two-norm solution of equation (25).

If one properly determine the vector z, then he can find
the minimum infinity-norm solution of equation (25). So we
can represent minimum infinity-norm solution z« as following
equation.

2% =2 + Naz™ (30)
where x“ is a minimum two-norm solution of the equation (25).
To determine z* properly, n — m additional equations are

need. And required equations can be induced from the Theorem
3.

2

22| = el
|z = |zt
3D
[°] = |zlnl
12 = |znlmil

where subscript represents the index of saturated® component of
optimal solution . Note that equation (31) be the additional

3 A scalar component x; of vector z is saturated when the magnitude of
z; is the same as the infinity-norm of «, that is: |z;| = ||z||co

n — m constraint equations which are used for determining z°°.

The main procedure of proposed method is as follows. At
first, compute a minimum two-norm solution 2 and nullspace
of A. Then select n — m + 1 rows from the nullspace N and
solve equation (31). If the resultant solution is not acceptable,
select any other n — m + 1 rows from N and proceed to the
next trial. Even though main procedure of the proposed method
is composed of very simple steps, there is no column exchange
algorithm which guarantees faster convergence developed so
far. So we adopt Cadzow’s column exchange algorithm for our
method.

Systematic procedures of the proposed method is following.

Step 1 : Calculate minimum two-norm solution z?
nullspace IV of matrix A.

Step 2 : Select the m — 1 smallest components of abs(z?).

Step 3 : Select a set of m— 1 columns from matrix A to form
the initial A; and therefore A, matrices. Indices of the columns
which form A; are the indices of the components which are

and

selected at previous step. And make Ni, Na, 23 and z3 from
N, 2% in the same way.

Step 4 : Determine a nonzero m x 1 vector v such that
Alv =0

Step 5 : Generate a feasible solution vector from this vector

v, that is
sgn(.v’tt))
u=|-—"——=|v 32)
( A3 l1

Step 6 : Calculate S = diag(sgn|Ahu])* and then calculate
B = SN, and x = Sz

Step 7 : Select a row vector from B to form B, and a com-
ponent X from x.

B, Xa
= = 33
B { B, }, X [ b ] (33)

Step 8 : Calculate z
z =inv(Bf)xf (34)

where By = B, — [Bo, -+, Bb]’, x5 =[x, "> X5} — Xa-

Step 9 : Calculate solution z and check validity of the solu-
tion, that is:

@) If {|zflc < v'u, then the solution z is the minimum
infinity-norm solution.

() If ||z||eo > y'u, then the solution z is not valid. Proceed
to next step.

Step 10 : Let z1(p) denote any component of vector z1 for
which | z1(p) |> y'u. The p-th column vector of A; may then
be used in the exchange with A,. Typically, one will select that
p for which | z1(p) |= ||#1[|oo-

Step 11 : To determine the column vector from matrix A,
to be used in the interchange, one solves the set of m equations

Aly = (sgnz1(p)))e, and by =0 (35)

for the unique m X 1 vector y where ¢, is the (m — 1) x 1
vector defined by

. 1 fori=p,
e”(’)_{ 0 fori=1,2m—1i#tp 0

4Traditionally sgn(0) = 0 but sgn(0) is chosen randomly from %1 in
this algorithm.
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Table 1. The average number of floating point operation of the
three algorithms,

Dimension || Proposed Shim’s Cadzow’s
of A algorithm | algorithm | algorithm
2x4 1,049 2,066 518
2x5 1,426 5,651 643
2x6 1,904 14,390 774
3x4 2,744 3,732 999
3x5 3,422 14,372 1,243
3x6 4,206 51,798 1,514

and b is “any” vector not contained in the subspace spanned by
the column vectors of matrix A;. A natural choice for b would
be the current feasible solution vector u.
Step 12 : Next, the ratio 1/¢; are computed, where
'
é:—% for i=1,2,---,n—m+1. 37
Let 1/e4 be the largest of these ratios.

Step 13 : Interchange column p of matrix A; with column
g of matrix As to form the new A, and A, matrices at the next
iteration. The integers p and ¢q are those found at steps 7 and 9
respectively. Go to Step 3.

Cadzow’s algorithm needs to satisfy Haar condition for suc-
cess of execution. If a system does not satisfy Haar condition,
C-Step 5 and C-Step 11 can make improper results i.e. infea-
sible 1 and u can be made. Although we can calculate u in a
different way, we can not solve [A;|u] ™" for C-Step 5. But the
proposed algorithm does not need any condition which a sys-
tem must satisfy. The following example shows versatility of
the proposed method.

Example

12 3 4 1
A_[l 2 3 5}’ y‘[o]

the algorithm calculate a minimum two-norm solution z® and
null space N of A in Step 1.

For a system of equation with

2 = [0.3571, 0.7143, 1.0714, — 1.0000]"
N | 09636 01482 02224 0.0000 |"
- 0.0000 —0.8321 0.5547 0.0000

During the first iteration, important variables are calculated as
follows.

Ay =[1 1]F, Ny = [-0.9636 0.0000],z% = 0.3571,

u=[1 -17s = 1 -1 1"
5 0.1482 —0.8321
B = [ a } = | —02224 —05347 |,
b 0.0000  0.0000
0.7143
x = [ Xa } = | —1.0714
Xb ~1.0000

z=[0.3706 - 0.2774]"

From the above results, the resultant solution ™ is calculated
as follows:

" =1[0,1,1,-1]7

And this solution satisfy the condition of Step 9, so this solution
is a minimum infinity-norm solution of the system.

Note that Cadzow’s algorithm fails in calculating the opti-
mum solution for above examples, because the matrix A does
not satisfy Haar condition while the proposed algorithm gives
the correct solution.

Table 1 compares the average number of floating point oper-
ations of the three algorithms. As shown in the table, our algo-
rithm needs a little more floating point operation than Cadzow’s
algorithm, but much less than Shim’s algorithm. It is notewor-
thy that determining minimum two-norm solution takes almost
half of the operation of the proposed algorithm.

IV. Avoiding discontinuity in trajectory planning

In some cases, uniqueness of minimum infinity-norm solu-
tions can not be guaranteed by the existing methods and this
may cause some discontinuity problem in continous problems.
Discontinuity means the solution of a system can jump at some
time. This may also cause control input to a system to jump
with large deviation and cause backlashes or jerks. The remain-
ing question is when the nonunique and discontinuous solution
can be occurred and how we can recognize this situation? More
detail information about uniqueness and continuity of least in-
finity norm solutions is available in [9].

1. lan’s approach

The keywords of this approach are ‘rate mixing’ and ‘sub-
space angle’. Rate mixing approach adopts a linear combination
of a minimum two-norm solution and a minimum infinity-norm
solution to make a new feasible solution for avoiding disconti-
nuity. So the rate mixing has the following form:

i =ri 4+ (1-r)?, 0<r<1 (38)

Note that every solution of the above form satisfies the equa-
tion Az* = y, because the null space of A is always orthogonal
to A. In this approach, the subspace angle is used for determi-
nation of the coefficient r. The subspace angle is defined geo-
metrically as the angle between two hyperplanes(subspaces St
and S2) embedded in a higher dimensional space. Because non-
uniqueness can occur when solution space of a system touches
more than one points of a hypercube, it is good to measure the
angle between solution space and subspace of the hyperplane
which include solution point. Since the solution space of a sys-
tem is parallel to the nullspace of the system, we can replace
the solution space with the nullspace in calculating subspace
angle. As a matter of fact, Ian’s approach doesn’t calculate ac-
tual subspace angle. To find the minimum subspace angle over
all possible faces and edges of the hypercube, Ian suggested to
concatenate nullspace N and Sz into n X n matrix and to check
its determinant. A zero determinant corresponds to a zero sub-
space angle; larger absolute value determinants indicate larger
subspace angles.
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Fig. 8. Geometry of subspace angles.

Finally the discontinuity index has the following form:

Ny 0
det |: N2 Imxm :H

= min|det[N1] x det[I]| = min |det[N1]]  (39)
So Sa

dmin min |det[N1]S2}} = min
Sa Sa

And the mixing ratio is defined with the discontinuity index
as follows:
r=1—g “min (40)

This approach is well defined, easy to understand and ready
to be implemented in computer codes. But the “Zero Subspace
Angle” condition is not complete(necessary but not sufficient)
in deciding discontinuity. So sometimes the mixing ratior r
drops to zero, even in a case where discontinuity is not immi-
nent. If someone has to know exact situation, this approach can
fail to give exact information. So we propose a new approach
that can handle this situation in next section.

2. A new approach

Figure 8 shows a geometry of subspace angle for a 2 x 3
matrix A in the equation (25). Note the solution space is 1-
dimensional in this case. Ian’s approach measures subspace an-
gles between solution space and every faces of hypercube. But
there is no need to measure all of them. In figure 8, the solu-
tion space has no intersection with the face F3, so the subspace
angle between the solution space and /3 needs not be calcu-
lated in this case. Because of the above reason “Zero Subspace
Angle” condition is not said to be complete. Now there is one
question remained. How can one select subspaces which have
an intersection with solution space? In the Figure 8, we can
find an answer, the solution space has intersection with face F;
and F5, but not with face Fs. In this case, the first and second
component of optimal solution z™* has the same magnitude with
||z*||co, while the third one does not. During the running of
algorithm, one can easily determine indices of saturated com-
ponents of z*. Indices of columns which compose matrix Az
used in our algorithm or Cadzow’s algorithm are the indices of
saturated components of z*. So one can easily find the faces
that have an intersection with the solution space, and determine

the true discontiuity index using the corresponding faces. Based
on the observation, the matrix S» and Ny of equation (39) are
determined easily. The indices of saturated components of op-
timal solution z* determines Ny interested.

It is a time consuming to calculate nullspace of matrix A in
lan’s method. If the /m X n matrix A has rank m, nullspace
of matrix A can be uniquely specified. So we can replace N in
equation (39) with A, and get the same result. But the indices of
row which is the element of N1 are not the same as that of Ian’s
method. Matrix N; in this case must include the matrix A;’.
Each column of A; is the column of A whose index correspond
to that of non-saturated element in optimal solution z*.

One can easily find the matrix A; in the last of procedure of
finding optimal solution. So distance from discontinuity can be
determined in the procedure of finding optimal solution with a
few additional calculations.

But this discontinuity index has intrinsic problem of dis-
continuity when applied to continuous time problem. Though
the contact point may be changed continuously, the hyperplane
which includes the contact point can hop from one hyperplane
to another. One may apply moving average method to smoothen
the hop in practical problems.

Fig. 9. The four-link planar robot executes a linear trajec-
tory(shown as dashed arrow).

3. Example

To show the versatility. of the proposed- method, we derive
a joint trajectory with given workspace trajectory. by solving
inverse kinematic equation of a four-link planar redundant ma-
nipulator. At every instance the inverse kinematic problem is
described as solving equation J(8(¢))8(t). = i(t), where &(t)
is the desired workspace velocity, J(8(t)) is Jacobian matrix of
the moment, and é(t) is the joint velocity to be derived.

Joint trajectory planning based on Ian’s method is shown in
figure 10. Even though there is no discontinuity of each derived
joint angle, discontinuity indices around 190 and 320 in time
axis fall to zero values. These sinations occur because mini-
mum zero subspace angles between solution space with wrong
hyperplanes are taken in calculating the discontinuity index.

On the other hand, Figure 11 shows the result of proposed
method to the same example. In the figure, discontinuity index
doesn’t fall to zero values near 190 and 320 as expected from the
robot trajecory. As mentioned before, any solutions combining
minimum 2-norm solution and minimum infinity-norm soluiton
satisfy the given equation.
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Fig. 10. Graphs showing the four joint angular velocities and
mixing ratio while executing the linear trajectory us-

ing Ian’s method.
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Fig. 11. Mixing ratio using proposed method applied to the
same example.

V. Conclusion

In this paper, we propose a new algorithm for finding min-
imum infinity-norm solution. The proposed algorithm intends
to take the merits of existing two methods, Cadzow’s algorithm
and Shim’s algorithm. Also, the proposed algorithm needs not
satisfy Haar condition which is a strict requirement for Cad-
zow’s method. The proposed algorithm is proven to be com-
putaionally efficient than Shim’s algorithm especially for larger
dimensinal problems.

We also described how to determine the true distance from
singularity in solution while preceding research work done by
Ian may fails to give the true distance. One more pratically im-
port contribution of the proposed approach is that it does not
need any separate procedure for determining discontinuity in-
dex representing the distance from singular situation while the
existing method has to include additional procedure for calcu-
lating the discontinuity indes.

Not only examples where the proposed method can handle
while the existing method cannot handle but also examples
where the proposed algorithm is more efficient than the exist-
ing methods are described with numerical data. As a robotic
application, we applied the proposed method to optimal trajec-
tory planning for a redundant manipulator and monitored the
discontinuity of the trajectory in the same framework of the al-
gorithm, in which the existing method may fail to give exact
information for singularity(i.e. discontinuity) with additionally
introduced procedure.

Future studies may include developing more efficient method
that can be applied to real-time trajectory planning and more an-
alytic approach to the minimum infinity-norm soltion that over-
comes the intrinsic discontinuity of the solution.

References

[1] Y. Nakamura, Advanced Robotics, Redundancy and Opti-
mization, Addison-Wesley Publishing Company, 1991.

{2] B. Siciliano, “Kinematc control of redundant robot manip-
ulators : a tutorial,” Journal of Robotic Systems, vol. 6, no.
3, pp. 201-212, 1990.

[3] T. Yoshikawa, “Manipulability and redundancy control of
robotic mechanisms,” IEEE Int. Conference of Robotics
and Automation pp. 1004-1009. 1985.

{41 A.James Cadzow, “A finite algorithm for the minimum /o
solution to a system of consistent linear equations” SIAM
Journal of Numerical Analysis, vol. 10, no. 4, pp. 607-617,
Sept. 1973.

[51 A.James Cadzow, “An efficient algorithmic procedure for
obtaining a minimum [, solution to a system of consistent
linear equations™ SIAM Journal of Numerical Analysis, vol.
11, no. 6, pp. 1151-1165, Dec. 1974.

[6] I. C. Shim and Y. S. Yoon, “Stability constraint for torque
optimization of a redundant manipulator,” Proc. IEEE
Conf. Robotics and Automation, Albuquerque NM, pp.
2403-2408, April 1997.

[7]1 1. C. Shim and Y. S. Yoon, “Stabilized minimum infinity-
norm torque solution for redundant manipulators™ Robotica
pp- 193-205, 1998.

[8] I Gravagne and I. D. Walker, “Properties of minimum
infinity-norm optimization applied to kinematically redun-
dant robots,” Proc. IEEE/RSJ Conf. Intelligent Robots and
Systems, Victoria, B. C., Canada, pp. 152-160, October
1998.

[9]1 L Gravagne, “Minimum effort techniques for inverse kine-
matics of redundant robot manipulators,” Master Thesis,
Dept. of Electical Eng., Clemson University, 1999.

[10] Jihong Lee, “A structured algorithm for the minimum [
solutions and its application to robot velocity workspace
analysis” Robotica, vol. 19, pp. 343-352, 2001.



Transactions on Control, Automation, and Systems Engineering Vol. 4, No. 2, June, 2002 139

In-Soo Ha

He received BS and M.S. degree in
Mechatronics Engineering from Chung-
nam National University, Taejon, Korea,
in 1999 and 2001. Now he works for the
Samsung Electronics, Suwon, Korean.

Ji-Hong Lee
He received BS degree in electronic
engineering from Seoul National Uni-
versity, Seoul, Korea, in 1983 and
the M.S and Ph.D. degrees in Elec-
trical Engineering from the korea Ad-
‘ vanced Institue of Science and Tech-
AR nology(KAIST), Taejon, Korea, in 1985
and 1991. From 1983 to 1988, he worked for the Hyundai
Heavy Industry. From 1991 to 1993, he was an assistant pro-
fessor in Electronics Control Engineering, Kum-Oh Technical
College. He is now a professor in Mechatronics Engineering,
Chungnam National University, Taejon, Korea. His current re-
search interests include intelligence control, neural network,
fuzzy control, motion capture, and multiple robot path plan-
ning.



