• 제목/요약/키워드: Interpolation Wavelets

검색결과 11건 처리시간 0.023초

보간 웨이블렛 기반의 Sparse Point Representation (Sparse Point Representation Based on Interpolation Wavelets)

  • 박준표;이도형;맹주성
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.8-15
    • /
    • 2006
  • A Sparse Point Representation(SPR) based on interpolation wavelets is presented. The SPR is implemented for the purpose of CFD data compression. Unlike conventional wavelet transformation, the SPR relieves computing workload in the similar fashion of lifting scheme that includes splitting and prediction procedures in sequence. However, SPR skips update procedure that is major part of lifting scheme. Data compression can be achieved by proper thresholding method. The advantage of the SPR method is that, by keeping even point physical values, low frequency filtering procedure is omitted and its related unphysical thresholing mechanism can be avoided in reconstruction process. Extra singular feature detection algorithm is implemented for preserving singular features such as shock and vortices. Several numerical tests show the adequacy of SPR for the CFD data. It is also shown that it can be easily extended to nonlinear adaptive wavelets for enhanced feature capturing.

멀티스케일 적응 웨이블렛-갤러킨 기법을 이용한 박막 고유치 문제 해석 (Eigenvalue Analysis of a Membrane Using the Multiscale Adaptive Wavelet-Galerkin Method)

  • 이용섭;김윤영
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.251-258
    • /
    • 2004
  • Since the multiscale wavelet-based numerical methods allow effective adaptive analysis, they have become new analysis tools. However, the main applications of these methods have been mainly on elliptic problems, they are rarely used for eigenvalue analysis. The objective of this paper is to develop a new multiscale wavelet-based adaptive Galerkin method for eigenvalue analysis. To this end, we employ the hat interpolation wavelets as the basis functions of the finite-dimensional trial function space and formulate a multiresolution analysis approach using the multiscale wavelet-Galerkin method. It is then shown that this multiresolution formulation makes iterative eigensolvers very efficient. The intrinsic difference-checking nature of wavelets is shown to play a critical role in the adaptive analysis. The effectiveness of the present approach will be examined in terms of the total numbers of required nodes and CPU times.

SPIHT Image Compression Using Biorthogonal Multiwavelets on [-1,1]

  • Yoo Sang-Wook;Kwon Seong-Geun;Kwon Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제8권6호
    • /
    • pp.776-782
    • /
    • 2005
  • This paper presents a SPIHT image compression method using biorthogonal multi wavelets on [-1,1]. A family of biorthogonal scaling vectors is constructed using fractal interpolation function, and the associated biorthogonal multi wavelets are constructed. This paper uses biorthogonal multi wavelets to be supported in [-1,1] associated with biorthogonal scaling vectors to be supported in [-1,1]. The scaling vectors and wavelets remain biorthogonal when restricted to integer intervals, making them well suited for bounded domains. The experiment results of simulation of the proposed image compression using biorthogonal multiwavelets on [-1,1] based on SPIHT were found to be excellent PSNR for LENA and PEPPERS images except for BABOON image than already existing single wavelets and DGHM multi wavelets.

  • PDF

박막 고유치 해석을 위한 멀티스케일 적응 웨이블렛-갤러킨 기법 (Multiscale Adaptive Wavelet-Galerkin Method for Membrane Eigenvalue Analysis)

  • 이용섭;김윤영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1291-1296
    • /
    • 2003
  • The objective of the present research is to develop a wavelet-based multiscale adaptive Galerkin method for membrane eigenvalue analysis. Since approximate eigensolutions at a certain resolution level can be good guesses, which play an important role in typical iterative solvers, at the next resolution level, the multiresolution iterative solution approach by wavelets can improve the solutionconvergence rate substantially. The intrinsic difference checking nature of wavelets can be also utilized effectively to develop an adaptive strategy. The present wavelet-based approach will be implemented for the simplest vector iteration method, but some important aspects, such as convergence speedup, and the reduction in the number of nodes can be clearly demonstrated.

  • PDF

불규칙 점 집합에서의 웨이브렛에 관한 연구 (A Study on the Wavelets on Irregular Point Set)

  • 지인호
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.69-74
    • /
    • 2023
  • 이 논문에서는 일차원과 이차원에서 불규칙한 점 집합에서의 웨이브렛을 구현하고 분석하는 기법이 기술되었다. 특히 우리는 부분할 방법과 계산에 집중하였다. 부분할은 선과 망사를 연속적인 분할 동작의 부드러운 곡선이나 곡선의 표면으로 간략화시키는 기법을 의미한다. 웨이브렛 구조를 특이한 환경에 일반화시키는 열쇠는 일반화된 부분할을 사용하는 것이다. 첫 번째 일반화 구조는 이미 부분할과 연결되었는데 그것은 이차 일반화 웨이브렛 구현에 보다 더 중요하게 되었다. 부분할 구조는 빠른 알고리즘을 제공하여주고, 자연적인 다해상도 구조를 만들어 주어 우리가 추구하려는 기본의 스케일 함수와 웨이브렛을 제공하여 준다.

Implementation Strategy for the Numerical Efficiency Improvement of the Multiscale Interpolation Wavelet-Galerkin Method

  • Seo Jeong Hun;Earmme Taemin;Jang Gang-Won;Kim Yoon Young
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.110-124
    • /
    • 2006
  • The multi scale wavelet-Galerkin method implemented in an adaptive manner has an advantage of obtaining accurate solutions with a substantially reduced number of interpolation points. The method is becoming popular, but its numerical efficiency still needs improvement. The objectives of this investigation are to present a new numerical scheme to improve the performance of the multi scale adaptive wavelet-Galerkin method and to give detailed implementation procedure. Specifically, the subdomain technique suitable for multiscale methods is developed and implemented. When the standard wavelet-Galerkin method is implemented without domain subdivision, the interaction between very long scale wavelets and very short scale wavelets leads to a poorly-sparse system matrix, which considerably worsens numerical efficiency for large-sized problems. The performance of the developed strategy is checked in terms of numerical costs such as the CPU time and memory size. Since the detailed implementation procedure including preprocessing and stiffness matrix construction is given, researchers having experiences in standard finite element implementation may be able to extend the multi scale method further or utilize some features of the multiscale method in their own applications.

ON THE GIBBS PHENOMENON FOR THE SHANNON SAMPLING SERIES IN WAVELET SUBSPACES AND A WAY TO GO AROUND

  • Shim, Hong-Tae
    • 대한수학회논문집
    • /
    • 제13권1호
    • /
    • pp.181-193
    • /
    • 1998
  • The Shannon sampling series is the prototype of an interpolating series or sampling series. Also the Shannon wavelet is one of the protypes of wavelets. But the coefficients of the Shannon sampling series are different function values at the point of discontinuity, we analyze the Gibbs phenomenon for the Shannon sampling series. We also find a way to go around this overshoot effect.

  • PDF

일반 형상의 2차원 영역에서의 멀티스케일 웨이블렛-갤러킨 기법 (Multiscale Wavelet-Galerkin Method in General Two-Dimensional Problems)

  • 김윤영;장강원;김재은
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.939-951
    • /
    • 2002
  • We propose a new multiscale Galerkin method based on interpolation wavelets for two-dimensional Poisson's and plane elasticity problems. The major contributions of the present work are: 1) full multiresolution numerical analysis is carried out, 2) general boundaries are handled by a fictitious domain method without using a penalty term or the Lagrange multiplier, 3) no special integration rule is necessary unlike in the (bi-)orthogonal wavelet-based methods, and 4) an efficient adaptive scheme is easy to incorporate. Several benchmark-type problems are considered to show the effectiveness and the potentials of the present approach. is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

A Fast Processing Algorithm for Lidar Data Compression Using Second Generation Wavelets

  • Pradhan B.;Sandeep K.;Mansor Shattri;Ramli Abdul Rahman;Mohamed Sharif Abdul Rashid B.
    • 대한원격탐사학회지
    • /
    • 제22권1호
    • /
    • pp.49-61
    • /
    • 2006
  • The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable properties. In this paper, it is extended to the UDAR data compression. A newly developed data compression approach to approximate the UDAR surface with a series of non-overlapping triangles has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital surface model that consists of elevation values with x, y coordinates that make up triangles. But over the years the TIN data representation has become an important research topic for many researchers due its large data size. Compression of TIN is needed for efficient management of large data and good surface visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to 'modify' the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets. The quality of geographical surface representation after using proposed technique is compared with the original UDAR data. The results show that this method can be used for significant reduction of data set.

Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model

  • He, Wen-Yu;Zhu, Songye
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.239-256
    • /
    • 2015
  • An adaptive-scale damage detection strategy based on a wavelet finite element model (WFEM) for thin plate structures is established in this study. Equations of motion and corresponding lifting schemes for thin plate structures are derived with the tensor products of cubic Hermite multi-wavelets as the elemental interpolation functions. Sub-element damages are localized by using of the change ratio of modal strain energy. Subsequently, such damages are adaptively quantified by a damage quantification equation deduced from differential equations of plate structure motion. WFEM scales vary spatially and change dynamically according to actual needs. Numerical examples clearly demonstrate that the proposed strategy can progressively locate and quantify plate damages. The strategy can operate efficiently in terms of the degrees-of-freedom in WFEM and sensors in the vibration test.