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Abstract : The lifting scheme has been found to be a flexible method for constructing scalar wavelets
with desirable properties. In this paper, it is extended to the LIDAR data compression. A newly developed
data compression approach to approximate the LIDAR surface with a series of non-overlapping triangles
has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital
surface model that consists of elevation values with x, y coordinates that make up triangles. But over the
years the TIN data representation has become an important research topic for many researchers due its
large data size. Compression of TIN is needed for efficient management of large data and good surface
visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient
algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new
interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the
splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to

‘modify’ the point values (point coordinates for geometry) after the splitting. Then, this data set is
compressed at the desired locations by using second generation wavelets. The quality of geographical
surface representation after using proposed technique is compared with the original LIDAR data. The
results show that this method can be used for significant reduction of data set.

Key Words : Light Detection and Ranging (LIDAR), Delaunay Triangulation, Triangulated Irregular
Network (TIN), Geographical Information System, Lifting scheme, Second generation
wavelet, Image compression.

1. Introduction The storage, transmission and visualization of terrain

data pose challenges for its use in GIS and potential

Large digital terrain data sets such as Light applications on the World Wide Web. A compression
Detection and Ranging data (LIDAR) are used in technique is needed for this terrain data, because

Geographic Information System (GIS) applications. transmitting terrain data is crucial to a web-based GIS.
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Research on GIS data compression for managing
large data sets dated back to 1980s. Recently, most of
the methods for image (spatial data) compression are
based on wavelets and related techniques. Most of the
commercial exisiting image compression software is
based on the first generation wavelets. Very little work
has been done on image compression based on second
generation wavelets (Amaratunga ef. al., 2003).
Wavelet approaches for image compression tend to
outperform Fourier approaches because of its ability to
represent both spatially localized features and smooth
regions in an image. The superior compression
capability of wavelets combined with their natural
multiresolution structure makes them a good
representation for storing images. While working with
dyadic wavelet decomposition digital images are
represented by wavelet coefficients. These types of
representation in dyadic wavelet decomposition are
known as linear decomposition over a fixed
orthogonal basis. The non-linearity in the
approximation of images by wavelets is introduced by
the thresholding of the wavelet coefficients. This type
of approximation can be viewed as mildly nonlinear.
Recently, several highly nonlinear methods for
capturing the geometry of images were developed,
such as wedgelets (Donoho, 1999); as well as edge-
adapted nonlinear multiresolution and geometric
spline approximation (Demaret et al., 2004).

This paper presents a new approach for LIDAR data
compression method using second generation wavelets.
A random set of points has been approximated to
represent a surface by Delaunay triangulation. The
theory, computations, and applications of Delaunay
triangulations and Voronoi diagrams have been
described in detail in the literature (Lawson, 1972;
Sibson, 1978; Lee and Scachter, 1980; Watson, 1981;
Mirante and Weingarten, 1982; Macedonio and
Pareschi, 1991; Kao et al., 1991; Puppo et al., 1992;
Tsai, 1991, 1993). The present work describes a fast
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algorithm based on Tsai’s Convex Hull Insertion
algorithm (Tsai, 1991, 1993), for the construction of
Delaunay triangulations of arbitrary collections of
points on the Euclidean plane. The original algorithm
has been improved further for a faster computation of
geometric structures. The source code has been written
in FORTRAN compiler. Once the triangulated irregular
network has been created from the random set of points
was further subjected to compression by using second
generation wavelets. Results were shown in a
comparative study basis for the TIN data compression

at different level of resolution.

2. Delaunay Triangulation

Many researchers (Lawson, 1972; Evans et al.,
2001; Abasolo, et al., 2000) have suggested different
ways to construct triangulations with the local
equilateral property. A well known construction called
the Delaunay Triangulation simultaneously optimizes
several of the quality measures such as max-min
angle, min-max circumcircle, and min-max min-
containment circle. Jiinger and Snoeyinks (1998) have
proposed Delaunay triangulation for progressive
visualization. The Delaunay triangulation “DT” of a
point set is the planar dual of the famous Voronoi
diagram. The Voronoi diagram is a partition of the
plane into polygonal cells one for each input point so
that the cell for input point ‘a’ consists of the region of
the plane closer to ‘a’ than to any other input point. So
long as no four points lie on a common circle then
each vertex of the Voronoi diagram has degree three
and the DT which has a bounded face for each
Voronoi vertex and vice versa will indeed is a
triangulation. If four or more points do lie on a
common circle then these points will be the vertices of
a larger face that may then be triangulated to give a

triangulation containing the DT Voronoi diagrams and
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Delaunay triangulations have been generalized in
numerous directions. There is a nice relationship
between Delaunay triangulation and three dimensional
convex hulls by lifting each point of the input to a
paraboloid in three-space by mapping the point with
coordinates (x, y) to the point (x, y, x* + y2). The
convex hull of the lifted points can be divided into
lower and upper parts: a face belongs to the lower
convex hull if it is supported by a plane that separates
the point set from (0, 0, - ). It can be shown that the
DT of the input points is the projection of the lower
convex hull onto the -plane as depicted in Figure 1.
Finally a direct characterization: if and are input points
the DT contains the edge {a, b} if and only if there is a
circle through and that intersects no other input points
and contains no input points in its interior. Moreover
each circumscribing circle (circumcircle) of a DT
triangle contains no input points in its interior.

The following are some properties of Delaunay
triangulations have been discussed.

Let Y denote a finite planar point set.

+ A Delaunay triangulations D(Y) of is one, such
that for any triangle in D(Y), the interior of its
circumcircle does not contain any point from Y. This
specific property is termed as Delaunay property.

- The Delaunay triangulation D(Y) of Y is unique,
provided that no four points in Y are co-circular.

Since neither the set X of pixels nor its subsets

Figure 2. It shows Irregular set of points.
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Upper convex hull

Lower convex hull

Delaunay triangulation ‘i ol '

Figure 1. The liting transformation maps the DT to the lower
convex hull.

satisfy this condition, we initially perturb the
pixel positions in order to guarantee unicity of
the Delaunay triangulations of X and of its
subsets. Each perturbed pixel corresponds to one
unique unperturbed pixel.

For any y€Y, D(Y \\y)can be computed from
D(Y) by a local update. This follows from the
Delaunay property, which implies that only the
cell C(y) of y in D(Y) needs to be retriangulated.
Recall that the cell C(y) of y is the domain
consisting of all triangles in D(Y) which contain
as a vertex. Figure 1 shows a vertex yED(Y)
and the Delaunay triangulation of its cell C(y).
D(Y) provides a partitioning of the convex hull
[Y] of Y. Figure 2 shows the irregular set of 12
points and Figure 3 shows the Delaunay

triangulation of these points.

Figure 3. it shows the TIN data structure
using Delaunay triangulation.
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3. Interpolation Wavelet Filters for TIN

The lifting scheme is a tool for constructing
second-generation wavelets (Sweldens, 1994, 1997),
which are no longer, dilates and translates of one
single function. Donoho (1993) have also undertaken
related work on second generation wavelets. In
contrast to first-generation wavelets, which used the
Fourier transform for wavelet construction, a
construction using lifting is performed exclusively in
spatial domain and, thus, wavelets can be custom
designed for complex domains and irregular
sampling.

The basic idea behind lifting is to start with simple
multiresolution analysis and gradually build a
multiresolution analysis with specific, a priori defined
properties. The lifting scheme can be viewed as a
process of taking an existing wavelet and modifying

it by adding linear combinations of the scaling

/V

Figure 4. It shows graphical representation of surface.
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Figure 6. it shows the wiring diagram for spillting, predicting
and updating steps for liting scheme.
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function at the same level of resolution.

An interpolation wavelet filter for TIN lies in
subdivision process which has two steps (Kiema and
Bahr, 2001). One is a splitting step; the other one is
an elevation step. In the splitting step, a triangle is
divided into several sub-triangles (Wu and
Amaratunga, 2003; Dyn et al., 1990; Cohen, 2001).
The elevation step is to calculate the point values
(point coordinates for geometry) after the splitting.
Let us discuss this partition step mathematically.

Let us consider a surface as represented in Figure 4

and Figure 5 can be defined mathematically as:

Surface S, = {8, 0<j<2") (1)

The surface value at x,,; can be spiltted into two sets
of coefficients as shown in equation 3 and 4. Figure 6
shows the wiring diagram of spiltting, predicting and
updating steps of the surface. The surface is spiltted into

even and odd set of coefficients as seen in Figure 7.

re 5. It shows mathematical representation of surface.

dn— |
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Figure 7. 1t shows the schematic diagram for spiltting step.
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Sp,j : surface value at xp

(eveny 1, oddy-) = split(Sy) @
Sn = {840, Su 1> Sn2> Sn3» Snd» S5 Su6s Sn,7}

evenn-1 = {Sn0, Sn2s Snd, Sné} 3
oddy-1 = {Sn1, Sn3, Sns: Sn,7} @

In predicting step, even samples can be used to
calculate the odd samples and vice versa. In this step,
only the even-indexed coefficients of the previous
scale are available. Thus to reconstruct the previous
scale, we need a predictor to calculate the missing
odd-indexed coefficients for the upper scale. This
operator may use the correlation which exists between
eveny. o coefficients. Obviously, some error between
the approximated even indexed point, P(even,; x) and
the actual value, eveny o1 is expected. This error
represents the loss of accuracy as we move toward the

coarser scale.

dp- = odd, | ~P(even, ) )]

The construction of prediction operator is based on
some model of the data but not on the data itself. The
method used here to find a prediction function is
called interpolating subdivision (Swelden, 1997). To
predict a value for an odd-indexed point, we will
construct a polynomial with degree N-1 which passes
through even-indexed neighboring points. Depending
upon the degree of the polynomial, accuracy of the
prediction will be different.

Updating step ensures that the coarse surface have
the same average value as the original surface.
Therefore a sequence of coefficientshas S, to be
lifted such that Equation (5) is satisfied. This
requirement can be satisfied by using an operator
U(dy-1) and the eveny; values of the previous scale
such that

The update operator can be written as:

©)]
Each d,, 1 is surrounded by the number of N of the ¢

Sp-1 =eveny 1 + U(d,-1)

coefficients. For each d,.; and N neighboring ¢
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coefficients, the operator U may have different lifting
coefficients. As an example, for N = 2 two coefficients
a,b can be identified for d,j. The Sy k-1, Sp-1x+1 are
the coefficients which will be lifted. Therefore,

0

Sp-1x1 = Spe1k-1 +axdp 1k
Sn1x+1 = Spt kel +bxdp g
Where n represents the n scale and k is the counter
for coefficients. At the finest scale, the ¢ coefficients

are assumed equal to the sample points.

1) Proposed Lifting Scheme Algorithm

In this section, a new algorithm based on lifting
scheme has been proposed. We have derived new sets
of equations based on the area of triangle methods as
shown in Equation 8 and Equation 11. The LIDAR
terrain data has been encoded as a discrete surface, i.e.
a finite set of points in three-dimensional (3-D) space,
by considering a non-negative discrete function of two
variables F(x, y) and establishing the correspondence
between the image and the surface A = {(x, v, c)lc =
F(x, y)}, so that each point in corresponds to a pixel in
the image; the couple (x, y) gives the pixel’s position
in the XY plane, while c is the point’s height.

Our goal is to approximate A by a discrete surface
B = {(x, y, d)|d = G(x, y)}, defined by means of a
finite set of points. Let T be a generic triangle on the
XY of vertices:

Py =(x1,y1), P2=(x2, y2), P3 = (x3,y3)
and let

1 =F(x1, y1), 2 =F(xp, y2), c3 =F(x3, y3),

®

Where Py, P> and P; are represented as

(x1, y1, €1, (X2, ¥2, ©2), (%3, ¥3, ¢3) € A.

Let O be the centroids of the triangle which means
a new point after adding into the triangulation as
shown in Figure 8. Let Aj, Ay and Aj be the area of
the three triangles. Then the total area can be
represented as:

A=A1+A2+A3 (9)
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Figure 8. It shows a surface showing the areas of the
riangles to calculate the wavelet coefficients.

Now, the detail coefficient can be represented as:
d"=7"-P(Z} (10)

Where, d" is the detail coefficient at the n level
and P(ZY) is the predicted value at n™ level and Z" is
the values at the odd samples.

The equation above can be rewritten in a general
1th

form for n-1" level as

2 =70 ey + C(dY (1)
where C(d") is the correction factor for wavelet
coefficients.

By using the correction factor, “significant points”
were identified from the irregular set of data. First,
the irregular set of points were taken and used it to
find average signal and difference signal (detail
coefficients) as described in Equation 10. Delaunay
triangulation and bivariate splines are used to
estimate average signal and difference signal. High
difference signal or detail coefficient value indicates
significance of a point. The bivariate splines used to
quantize the signal over Delaunay triangulation. The
purpose of this work is to find significant points and
use only this set of points to represent terrain. The
size of this set of significant points has become very
small compared to the original data set and hence the
data file will be compressed. This data set can be
transferred easily and terrain image can be
regenerated by using a small program based on

Delaunay triangulation and bivariate splines.

The generating process for the LIDAR data

compression is as follows:

1. Due to randomly distributed raw data points, the
data is interpolated by means of a linear
function. It is aiming to enable processing with
regularly distributed grid data.

2. Using the Delaunay algorithm the TIN model of
the surface has been calculated. For each triangle
in the TIN model the coordinates of the vertices
and their respective height values of the three
points that compose it were calculated.

3. The adjacency matrix that formed by the bounded
edges for all triangles has been calculated.

4. The coordinates of the vertices and triangle edges
has been rewritten in WTIN data structure.

5. The wavelet filter for each triangle has been
calculated based on the area method as
described in Equation 11. Wavelet coefficients
have been determined to check and compare the
area of each triangle based on lifting scheme. If
the wavelet coefficient value is much higher
than the threshold value then vertices were
retained. If the difference falls below a
predefined threshold the original points are
selected. This process is completed with the
number points added during the presented
iteration and was continued till all the points
were checked.

6.By using iterative processing, the original
LIDAR points were compared with the
compressed data and their respective Peak
Signal to Noise Ratio (PSNR) values were
calculated for both images to compare the

compression ratio.

4. Experimental Results

All algorithms were coded in Visual Fortran and
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MATLAB and executed on a Pentium IV, 256 MB
RAM machine. The optimized code is about 2000
lines of Visual Fortran and 500 lines of MATL.AB.
To evaluate the performance of the wavelet based
triangulation compression method several test data
were used. The wavelet based triangulation
compression method gives consistently better
performance for the LIDAR data that we used. This
section presents some results of the algorithm on
LIDAR data using the wavelet based triangulation
compression method at different levels of quality.

In our test, at each recursion step about 25% of the
vertices are removed by using the second generation
wavelet and lifting scheme. The number of triangles
in the hierarchy is at most only three times larger than
the number of triangles of the initial triangulation. We
next examine the storage overhead caused by the
maintenance of the hierarchy. The total amount of
storage in bytes of the data structure described in
previous section, which may include multiple copies
of the same triangle, is only 4 to 5 times larger than
the storage of the initial triangulation. In our
implementation, this gave a total memory
requirement for the hierarchical representation of a
terrain of data points of roughly bytes. The data
structure of Delaunay triangulation is different from
the data structure of wavelet compression in two
ways. First, we no longer store multiple copies of the
same triangle, instead we store for each triangle the
level at which it was created. Second, we introduce
the intermediate nodes, which reduce the total
number of pointers in the structure. Together these
two changes reduce the storage requirement by one
third, which means that the storage is about 3.5 times
as much as the storage for the initial terrain.

If the increase in storage would still be too much, it
is possible to have a trade-off between the size of the
structure and the difference between subsequent

levels. In particular, instead of requiring the deleted
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vertices to form an independent set, we can require

that they form independent groups of a certain size.

1) Data Used

Two different sets of LIDAR data were tested
using the lifting scheme algorithm to check the
efficiency of the compression program. The data
were in ASCII format describing the x, y and z values
for the points as shown in Figure 9. Delaunay
triangulation method for the creation of the TIN has
been applied to the original data. A new algorithm
has been developed for the creation of the TIN.
Further, TIN was compressed using the second
generation wavelets. A new algorithm for second
generation wavelet compression is proposed. Based
on the initial configuration of the original TIN,
different resolutions are constructed during wavelet
analysis.

In the first step the TIN mode! for the surface using
the Delaunay algorithm has been calculated. This
data set is compressed at the desired locations by
using second generation wavelets. Figures 10a,
Figure 11a and Figure 12a show the view of the
LIDAR terrain at three levels and the corresponding
triangulations (Figure 10b, Figure 11b and Figure
12b), generated using our compression method. In the
Figure 10b it can be noticed that the number of

B Ouminodes forthissrs i Notepad el
Fio Edt Format View Help
X value® "y value"” "Z value” A
6926.5800578425,897026.660056356,146.779998779297
7007.3299440658,891990.219941815,135. 009994506836
7010.75997251 66, 9201 8.399928257,135 089996337891
5943, 3899786464 ,891956.800022568,139,13000488281
7006,0500414195,891948.920069657,135. 009994506836
6969.7500722992,891901.993935837,136. 690002441406
7021.8199356764 91906.800070182,134. 330001831055
704 0600224967, 9 857.609949341 133.490005493164
37044,3700157621,891851.499947046,133.490005493164
86946.9300335463,89 838.19996217,139.300003051758
86926‘2100247567 91895, 78006076, 138. 789993286133
86893.4900642747,891893.449989464 142 410003662109
6885.8499874629 91963.619972063,146.779998779297
686162004274 54891891 .930057051 144, 009994506836
6826.440007649,891987.100015842,156. 63000488281
6829.4199418688, 91884 539998441 146, 519995117188
6765.4300342762, 8919 99981271 168.830001831055
6740.7599837623, 89, 967 509929511,182.710006713867
6742. 9800286093, 891974.259959964,182.460006713867
36755.2299985037 92001.. 850014089 180.440002441406 ~
|
Int, ol t N

Figure 9. It shows the original LIDAR data in ASCII format.
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Figure 11a. Terrain compression at 12 %(Gouraud shaded)
and its triangulation (1,023 points).
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Figure 11b. Triangulation for the tetrain at 12% (1,023 points).

Figure 12a. Terrain compressed at 23% (Gouraud shaded)

and its triangulation (870 points). Figure 12b. Triangulation of the terrain at 23% (870 points).

Figure 12d. Terrain compressed at 56%.
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triangles have been reduced significantly to reduce were removed from the data thus reducing the size of
the size of the original data. However, while deleting the terrain. It can be clearly seen that, there is no
the vertex points, we must be careful not to remove change in the quality of the surface after 12%
vertices that are very much significant for the compression. Figure 12a shows the image after 23%
generation of surface, such as peaks, pits, and passes. compression. Here the numbers of significant points
Therefore, the computation needs human intervention were reduced further to 870 points. Visual
to select the number of points desired to be deleted observation shows the quality of the surface is still

from the hierarchy. Note that the vertices of the
convex hull of the data points are always the same,
meaning fixed so that the terrain keeps its original
size. Figure 13a, Figure 14a and Figure 15a show the

view of the second set of LIDAR terrain at different

levels and the corresponding triangulations (Figure

13b, Figure 14b and Figure 15b), generated using our Figure 14a. Terrain compressed for second LIDAR data set at
compression techniques. The first LIDAR data as 12% (Gouraud shaded).
shown in Figure 10a has 5,000 points. Figure 10b

shows the Delaunay triangulation for the original data

computed using the proposed algorithm. Figure 11a LRSI
3 . R e Y ” u&%ﬁ§5
shows the result after 12% compression and Figure ;&% Lol i S
{ \V?‘» &
11b shows the Delaunay triangulation for the \‘x“?:g?‘;"" s
.. OSSR ok
compressed image. Here, the number of “significant vy,
. o e va
points” has been reduced significantly to 1023 DRt

number of points. Remaining insignificant points

Figure 13a. Initial Terrain for second LIDAR data set Figure 15a. Terrain compressed for second LIDAR data set at
{Gouraud shaded). 23% (Gouraud shaded).
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not changed. However, further compression at 37%
and 56%, the quality of the terrain has been degraded
as shown in Figure 12¢ and 12d. It shows that the
maximum threshold for the wavelet coefficients has
been achieved. The second LIDAR data set that we
have used in our compression scheme has 9823
number of points. Figure 13a shows the original
LIDAR data set. Figures 14a, 14b and 15a, 15b show
the results computed using the wavelet based lifting
scheme algorithm, Figure 14a shows the results after
12% compression and figure 15a shows after 23%
compression. This work also provides current
implementation of wavelet coefficients during the
compression operation. The proposed algorithm has
the multiresolution capability and easy to compress
due to large number of wavelet coefficients with
small magnitudes which is suitable for distributed

GIS applications such as web displaying.

5. Model Validation and Comparisons
with Alternative Methods

Results were evaluated by visual analysis as well
as by Peak-Signal-to-Noise Ratio (PSNR) and error
image criteria (Slone et. al., 2000). A program was
written in MATLAB for PSNR analysis. The Peak
Signal to Noise Ratio PSNR (dB) that measures the
size of the error relative to the peak value of the
signal. In order to obtain quantitative measures an
analysis of the gray value histograms has to be
performed which can lead to the Peak-Signal-Noise-
Ratio (PSNR) which describes the relation between
the maximal gray value within the original image
(peak) and the noise that is caused through the
compression. PSNR is defined as
peakz)

noise
Here, noise refers to the Mean Square Error (MSE)

PSNR = IO*log(

as described below.
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A widely used measure of reconstructed image for

an N x M size image is the mean square error (MSE)

as given by:
] 1wl 2
MSE= go: go: (gij—g%)

Here g;; is the grey value within the original and
g'ij the corresponding value within the compressed
image (both images of dimension). Tt is desirable to
obtain as less noise as possible and with that a large
PSNR value.

For our experiments, mean square error (MSE) and
peak signal to noise ratio (PSNR) was applied to
check the error of the compressed image. Lifting
scheme based wavelet decomposition was applied to
the LIDAR images. For each decomposition level, the
numbers of significant points are reduced. With
various combinations of using different decomposition
levels objective measures (PSNR) and subjective
measures (MSE) are presented versus compression
ratio (CR). In order not to make complicated
combinations of various decomposition levels, only
one data from the highest decomposition level were
kept, i.e. data from the lowest decon{position is always
ignored.

Figure 16 shows the average values for PSNR
from the differences between the original and the
reconstructed images for both LIDAR images under
study for three level decompositions. As can be seen,

the PSNR and compression ratio values vary

o33
o

o
S

3

~e—First LIDAR image
—a—Second LIDAR image

PSNR (dB)
8

n
(=]

=
(=]

o

————r——T T T d
5 8 9 10 15 20
Compression ratio

3

Figure 16. Graph showing relationship between compression
ratio and PSNR.
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inversely. In several cases we have an instance where
PSNR values are not in good accord with visual
quality criteria, while in the other cases the visual
quality increases as the MSE error goes down. Fig. 12
¢ and Figure 12d show the images for the first
LIDAR image after deleting more number of
significant points.

Table 1 shows the test statistics obtained for the first
LIDAR image. In Table 1 [insert table 1 about here]
the first column specifies the MSE, while the following
columns specify the compression ratio, and Peak
signal-to-noise ratio (PSNR). Table 2 shows the test
result obtained for the second LIDAR image using the
same compression ratio. From the analysis of data in
Tables 1 and 2, it can be seen that the PSNR ratio
decreases with the compression ratio as seen in Figure
16. PSNR value was between 27.98 to 48.24 dB and
28.54 to 47.28 dB for first and second LIDAR images

Table 1. It shows the test stafistics obtained for the first LIDAR image.

MSE Compression ratio PSNR
3 2 438.24
4.1 3 39.73
5.21 5 35.54
6.23 6 3234
7.34 8 31.68
8 10 30
9.1 15 28.59
104 20 2798

Table 2. It shows the error analysis, compression ratio and
PSNR values for second LIDAR image.

MSE Compression ratio PSNR
1.9 2 47.28
4 3 38.38
6 5 34.56
8 6 33.79

11 8 3231

13 10 30.76
13.3 15 29.84
139 20 28.54

~59-

respectively. We tested the algorithm on various types
of terrain images from different application domains of
LIDAR data; on all these test images simi.ar
conclusions can be drawn. Figure 17 shows the
comparison between MSE and compression ratio for
both images. It can be seen that the trend of the MSE is
almost same for both images. The MSE value was
between 3 to 10.4 and 4 to 9.8 for first and second
images respectively. All these images were compressed
and decompressed until 20:1 compression ratio.

In order to assess the effectiveness of our
compression algorithm on LIDAR image, four
schemes are applied: our lifting scheme based
method; JPEG2000; MrSID and ECZ compression
methods. Quantitative measurements are used to
evaluate the performance of the compression
schemes. The result of the compression of PSNR is
that JPEG 2000 is 34.62 dB, MrSID is 38.5 dB, ECW
is 34.5 dB and lifting scheme based is 39.25 dB, in

average. Figure 18 demonstrates the superiority of

12 -
10 /
§ 2 / ~— Firt LIDAR e
. -/.-7/ ~a—Second LIDAR image
/
2
0

T v T v — T
2 3 5 8 8 10 15 2
Compression ratio

Figure 17. Graph showing relationship between compression
ratio and MSE.

%‘ @ JPEG 2000
E’ a MSID

4 o ECW

a [ Lifting scheme

6 8 10 15 20

Compression ratio J

Figure 18. Graph showing comparison with other liting scheme
models against JPEG 2000, ECZ and MrSID.
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our method against JPEG with increasing
compression ratios and validate the mentioned results

of the visual inspection.

6. Conclusion

The construction of Triangulated Irregular
Network using Delaunay triangulation for'the LIDAR
data has been shown. This approach uses fast and
efficient second generation wavelets algorithm for
multiresolution analysis of GIS data compression.
This algorithm is easy to perform the mathematical
and computational operation with minimal time,
irrespective of the large data. Our algorithm scheme
preserves high-gradient regions that might exist in a
given data set. We have tested our method with
various data sets. The computational cost of our
algorithm depends on the different approaches used.
The initial triangulation can be done in O (nlogn), the
gradient approximation can be done in O (nlogn).
The individual refinement step has to check all the
original data points lying in the involved triangles, so
the complexity of each step is O(n). How often the
iteration step is executed depends on the error value
given in the input. As a general rule, the authors have
assumed that no more iteration should be done than
they are original data sites. So the overall complexity
is O(n?).
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