• Title/Summary/Keyword: Internet of small things

Search Result 136, Processing Time 0.024 seconds

Study on the Femtocell Vulnerability Analysis Using Threat Modeling (위협 모델링 기법을 이용한 펨토셀 취약점 분석에 대한 연구)

  • Kim, Jae-ki;Shin, Jeong-Hoon;Kim, Seung-joo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.8
    • /
    • pp.197-210
    • /
    • 2016
  • Lately smartphone uasage is increasing and many Internet of Things (IoT) devices support wireless communications. Accordingly, small base stations which called femtocells are supplied to prevent saturation of existing base stations. However, unlike the original purpose of the femtocell with the advanced hacking technologies, Vulnerability such as gaining the administrator authority was discovered and this can cause serious problems such as the leakage of personal information of femtocell user. Therefore, identify security threats that may occur in the femtocell and it is necessary to ways for systematic vulnerability analysis. In this paper, We analyzed the security threats that can be generated in the femtocell and constructed a checklist for vulnerability analysis using the Threat Modeling method. Then, using the constructed checklist provides a scheme that can improve the safety of the femto cell through the actual analysis and taken the results of the femtocell vulnerabilities analysis.

Space-Efficient Compressed-Column Management for IoT Collection Servers (IoT 수집 서버를 위한 공간효율적 압축-칼럼 관리)

  • Byun, Siwoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.1
    • /
    • pp.179-187
    • /
    • 2019
  • With the recent development of small computing devices, IoT sensor network can be widely deployed and is now readily available with sensing, calculation and communi-cation functions at low cost. Sensor data management is a major component of the Internet of Things environment. The huge volume of data produced and transmitted from sensing devices can provide a lot of useful information but is often considered the next big data for businesses. New column-wise compression technology is mounted to the large data server because of its superior space efficiency. Since sensor nodes have narrow bandwidth and fault-prone wireless channels, sensor-based storage systems are subject to incomplete data services. In this study, we will bring forth a short overview through providing an analysis on IoT sensor networks, and will propose a new storage management scheme for IoT data. Our management scheme is based on RAID storage model using column-wise segmentation and compression to improve space efficiency without sacrificing I/O performance. We conclude that proposed storage control scheme outperforms the previous RAID control by computer performance simulation.

Channel Selection Using Optimal Channel-Selection Policy in RF Energy Harvesting Cognitive Radio Networks (무선 에너지 하비스팅 인지 무선 네트워크에서 최적의 채널 선택 정책을 이용한 채널 선택)

  • Jung, Jun Hee;Hwang, Yu Min;Cha, Gyeong Hyeon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • Recently, RF energy harvesting technology is a promising technology for small-size IoT(Internet of Things) devices such as sensor to resolve battery scarcity problem. When applied to existing cognitive radio networks, this technology can be expected to increase network throughput through the increase of cognitive user's operating time. This paper proposes a optimal channel-selection policy for RF energy harvesting CR networks model where cognitive users in harvesting zone harvest ambient RF energy from transmission by nearby active primary users and the others in non-harvesting zone choose the channel and communicate with their receiver. We consider that primary users and secondary users are distributed as Poisson point processes and contact with their intended receivers at fixed distances. Finally we can derive the optimal frame duration, transmission power and density of secondary user from the proposed model that can maximize the secondary users's throughput under the given several conditions and suggest future directions of research.

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.

A Study on the Crime Prevention Smart System Based on Big Data Processing (빅데이터 처리 기반의 범죄 예방 스마트 시스템에 관한 연구)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.75-80
    • /
    • 2020
  • Since the Fourth Industrial Revolution, important technologies such as big data analysis, robotics, Internet of Things, and the artificial intelligence have been used in various fields. Generally speaking it is understood that the big-data technology consists of gathering stage for enormous data, analyzing and processing stage and distributing stage. Until now crime records which is one of useful big-sized data are utilized to obtain investigation information after occurring crimes. If crime records are utilized to predict crimes it is believed that crime occurring frequency can be lowered by processing big-sized crime records in big-data framework. In this research the design is proposed that the smart system can provide the users of smart devices crime occurrence probability by processing crime records in big-data analysis. Specifically it is meant that the proposed system will guide safer routes by displaying crime occurrence probabilities on the digital map in a smart device. In the experiment result for a smart application dealing with small local area it is showed that its usefulness is quite good in crime prevention.

ITU-R Study on Frequency Sharing for Mobile Satellite Services (ITU-R의 이동위성업무 주파수 공유 연구 현황)

  • B.J. Ku;D.S. Oh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Recently, preparations for 6G have led to the increasing interest in integrated or hybrid communication networks considering low-orbit satellite communication networks with terrestrial mobile communication networks. In addition, the demand for frequency allocation for new mobile services from low-orbit small satellites to provide global internet of things (IoT) services is increasing. The operation of such satellites and terrestrial mobile communication networks may inevitably cause interference in adjacent bands and the same band frequency between satellites and terrestrial systems. Focusing on the results of the recent ITU-R WP4C meeting, this study introduces the current status of frequency sharing and interference issues between satellites and terrestrial systems, and frequency allocation issues for new mobile satellite operations. Coexistence and compatibility studies with terrestrial IMT in L band and 2.6 GHz band, operated by Inmassat and India, respectively, and a new frequency allocation study (WRC-23 AI 1.18) are carried out to reflect satellite IoT demand. For the L band, technical requirements have been developed for emission from IMT devices at 1,492 MHz to 1,518 MHz to bands above 1,518 MHz. Related studies in the 2 GHz and 2.6 GHz bands are not discussed due to lack of contributions at the recent meeting. In particular, concerning the WRC-23 agenda 1.18 study on the new frequency allocation method of narrowband mobile satellite work in the Region 1 candidate band 2,010 MHz to 2,025 MHz, Region 2 candidate bands 1,695 MHz to 1,710 MHz, 3,300 MHz to 3,315 MHz, and 3,385 MHz to 3,400 MHz, ITU-R results show no new frequency allocation to narrow mobile satellite services. Given the expected various collaborations between satellites and the terrestrial component are in the future, interference issues between terrestrial IMT and mobile satellite services are similarly expected to continuously increase. Therefore, participation in related studies at ITU-R WP4C and active response to protect terrestrial IMT are necessary to protect domestic radio resources and secure additional frequencies reflecting satellite service use plans.

Design and Implementation of IoT based Low cost, Effective Learning Mechanism for Empowering STEM Education in India

  • Simmi Chawla;Parul Tomar;Sapna Gambhir
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.163-169
    • /
    • 2024
  • India is a developing nation and has come with comprehensive way in modernizing its reducing poverty, economy and rising living standards for an outsized fragment of its residents. The STEM (Science, Technology, Engineering, and Mathematics) education plays an important role in it. STEM is an educational curriculum that emphasis on the subjects of "science, technology, engineering, and mathematics". In traditional education scenario, these subjects are taught independently, but according to the educational philosophy of STEM that teaches these subjects together in project-based lessons. STEM helps the students in his holistic development. Youth unemployment is the biggest concern due to lack of adequate skills. There is a huge skill gap behind jobless engineers and the question arises how we can prepare engineers for a better tomorrow? Now a day's Industry 4.0 is a new fourth industrial revolution which is an intelligent networking of machines and processes for industry through ICT. It is based upon the usage of cyber-physical systems and Internet of Things (IoT). Industrial revolution does not influence only production but also educational system as well. IoT in academics is a new revolution to the Internet technology, which introduced "Smartness" in the entire IT infrastructure. To improve socio-economic status of the India students must equipped with 21st century digital skills and Universities, colleges must provide individual learning kits to their students which can help them in enhancing their productivity and learning outcomes. The major goal of this paper is to present a low cost, effective learning mechanism for STEM implementation using Raspberry Pi 3+ model (Single board computer) and Node Red open source visual programming tool which is developed by IBM for wiring hardware devices together. These tools are broadly used to provide hands on experience on IoT fundamentals during teaching and learning. This paper elaborates the appropriateness and the practicality of these concepts via an example by implementing a user interface (UI) and Dashboard in Node-RED where dashboard palette is used for demonstration with switch, slider, gauge and Raspberry pi palette is used to connect with GPIO pins present on Raspberry pi board. An LED light is connected with a GPIO pin as an output pin. In this experiment, it is shown that the Node-Red dashboard is accessing on Raspberry pi and via Smartphone as well. In the final step results are shown in an elaborate manner. Conversely, inadequate Programming skills in students are the biggest challenge because without good programming skills there would be no pioneers in engineering, robotics and other areas. Coding plays an important role to increase the level of knowledge on a wide scale and to encourage the interest of students in coding. Today Python language which is Open source and most demanding languages in the industry in order to know data science and algorithms, understanding computer science would not be possible without science, technology, engineering and math. In this paper a small experiment is also done with an LED light via writing source code in python. These tiny experiments are really helpful to encourage the students and give play way to learn these advance technologies. The cost estimation is presented in tabular form for per learning kit provided to the students for Hands on experiments. Some Popular In addition, some Open source tools for experimenting with IoT Technology are described. Students can enrich their knowledge by doing lots of experiments with these freely available software's and this low cost hardware in labs or learning kits provided to them.

The Effect of Innovation-oriented Organizational Culture on Job Engagement and Job Stress: Focusing on Moderating Effect of Self-efficacy

  • BAEK, Yoon-Ju;LIM, Yun-A;LEE, Jae-Chang
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.6
    • /
    • pp.29-39
    • /
    • 2020
  • Purpose: The purpose of this study is, in the situation where rapid response to the rapidly changing environment is required due to the development of the fourth industrial revolution such as artificial intelligence, virtual reality, and the internet of things, robotics, big data, additive manufacturing, bio-health, sharing economy and in the organizational culture aspiring toward the innovation of a major company, small business and a public institution, to analyze what influence a job-engagement and stress make, and what influence individual's self-efficacy as a moderator mediator makes, and to offer basic data for improving job-engagement and lowering job-stress. Research design, data, and methodology: For doing this, the literature and the empirical studies were combined. Deriving innovation-oriented organizational culture as factors affecting the job engagement and job stress through the literature, and have established hypotheses to verify them. We have collected data of 281 from ex,ecutives and staff-members working in areas including major company, small business and officials (the central government, a local public service, the prosecution, the police, and school). And these data were analyzed by SPSS 23 version. Results: Based on these data, the results of analysis were as follows; First, the innovation-oriented organizational culture which was recognized by organizational members had effect on job-stress. Second, the innovation-oriented organizational culture which was recognized by organizational members influenced job-stress. Third, in the relationship between the innovation-oriented organizational culture and job-engagement, self-efficacy did not influenced job-engagement. Finally, in the relationship between the innovation-oriented organizational culture and job-stress, self-efficacy influenced job-stress. Conclusions: Innovation-oriented organizational culture places importance on the organization's adaptability and flexibility in the external environment, so companies need to establish an innovation-oriented organizational culture favorable to achieving survival and successful innovation, and to develop and disseminate programs of positive and continuous organizations to improve task enthusiasm, reduce task stress, and enhance organizational performance. In the future, it will be necessary to verify the effectiveness of various organizational culture types through comparative analysis with companies that actively maintain an innovation-oriented organizational culture (Google, Kakao, etc.) and companies that prefer hierarchy-oriented organizational culture, relationship-oriented organizational culture, and market-oriented organizational culture.

Analysis of visible light communication system using 15 watt LED and 40 watt solar panel (소형 창고형 공장 적용을 고려한 15와트 LED 조명과 40와트 태양광 패널을 활용한 가시광통신 송수신 시스템 분석)

  • Woo, Deok Gun;Mariappan, Vinayagam;Park, Jong Yong;Lee, Jong Hyeok;Kim, Young Min;Cha, Jae Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.608-614
    • /
    • 2018
  • In addition to the diffusion of ICT technology, various protocols of short range wireless communication technology are being applied for efficient information operation. However, due to limitations of short-range wireless communication, communication is not smooth in places where frequency environment is poor, such as frequency confusion and warehouse type factory. When an alternative is needed. The development of LED technology and expansion of infrastructure through LED based visible light communication is attracting attention as an alternative and spreading the usage in wide range now a days. In addition, the infrastructure has been expanded with solar panels in response to the development of smarthome built-in with renewable energy. In this situation, visible light communication using PD has been limitedly applied in a near environment where the receiving angle of the PD and the ambient light ensure the LoS and the influence of the ambient light is small. In order to solve this problem, we have implemented visible light communication using LED lighting with large current infrastructure and solar panel with large receiving area, and proposed a circuit for restoring accurate data even in ambient light. Through this study results, it is expected that visible light communication can be more widely used and this result used as the base data for visible light communication research using the solar panel as the receiver.

Comparison of the sound source localization methods appropriate for a compact microphone array (소형 마이크로폰 배열에 적용 가능한 음원 위치 추정법 비교)

  • Jung, In-Jee;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • The sound source localization technique has various application fields in the era of internet-of-things, for which the probe size becomes critical. The localization methods using the acoustic intensity vector has an advantage of downsizing the layout of the array owing to a small finite-difference error for the short distance between adjacent microphones. In this paper, the acoustic intensity vector and the Time Difference of Arrival (TDoA) method are compared in the viewpoint of the localization error in the far-field. The comparison is made according to the change of spacing between adjacent microphones of the three-dimensional microphone array arranged in a tetrahedral shape. An additional test is conducted in the reverberant field by varying the reverberation time to verify the effectiveness of the methods applied to the actual environments. For estimating the TDoA, the Generalized Cross Correlation-Phase transform (GCC-PHAT) algorithm is adopted in the computation. It is found that the mean localization error of the acoustic intensimetry is 2.9° and that of the GCC-PHAT is 7.3° for T60 = 0.4 s, while the error increases as 9.9°, 13.0° for T60 = 1.0 s, respectively. The data supports that a compact array employing the acoustic intensimetry can localize of the sound source in the actual environment with the moderate reflection conditions.