DOI QR코드

DOI QR Code

A Study on the Crime Prevention Smart System Based on Big Data Processing

빅데이터 처리 기반의 범죄 예방 스마트 시스템에 관한 연구

  • Kim, Won (Division of IT Convergence, Woosong University)
  • 김원 (우송대학교 IT융합학부)
  • Received : 2020.10.06
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

Since the Fourth Industrial Revolution, important technologies such as big data analysis, robotics, Internet of Things, and the artificial intelligence have been used in various fields. Generally speaking it is understood that the big-data technology consists of gathering stage for enormous data, analyzing and processing stage and distributing stage. Until now crime records which is one of useful big-sized data are utilized to obtain investigation information after occurring crimes. If crime records are utilized to predict crimes it is believed that crime occurring frequency can be lowered by processing big-sized crime records in big-data framework. In this research the design is proposed that the smart system can provide the users of smart devices crime occurrence probability by processing crime records in big-data analysis. Specifically it is meant that the proposed system will guide safer routes by displaying crime occurrence probabilities on the digital map in a smart device. In the experiment result for a smart application dealing with small local area it is showed that its usefulness is quite good in crime prevention.

4차산업혁명 이후, 빅 데이터 분석, 로봇공학, 사물인터넷, 인공지능 등의 핵심 기술들이 여러 분야에서 활용되고 있다. 일반적으로 빅 데이터 기술은 방대한 데이터를 모으고, 분석하고 처리하며, 공급하는 단계를 갖는 것으로 이해되고 있다. 유용한 방대한 데이터 중에 하나인 범죄 기록은 현재까지는 범죄가 일어난 후 수사 정보를 획득하는데 이용이 되고 있다. 방대한 범죄 기록을 빅 데이터 처리하여 범죄를 예측하는 데 사용할 경우 범죄의 발생 빈도를 줄일 수 있을 것으로 판단된다. 본 논문에서는 범죄 기록을 빅 데이터 처리하여 범죄 발생 확률을 스마트 기기 사용자에게 제공하는 스마트 시스템을 제안한다. 구체적으로 기기상의 전자지도에 범죄 발생 확률을 나타내어 안전한 이동 경로를 안내하는 시스템을 의미한다. 소규모 지역을 다루는 스마트 앱으로 실험한 결과 범죄 예방에 있어서 활용성이 비교적 좋은 것으로 판단된다.

Keywords

References

  1. J. Kim, J. Go & K. Lee. (2015). A Scheme of Social Engineering Attacks and Countermeasures Using Big Data based Conversion Voice Phishing. Journal of the Korea Convergence Society, 6(1), 85-91. DOI : 10.15207/JKCS.2015.6.1.085
  2. J. Kang, J. Lee & Y. You. (2017). A Study on Implementation of Fraud Detection System (FDS) Applying BigData Platform. Journal of the Korea Convergence Society, 8(4), 19-24. DOI : 10.15207/JKCS.2017.8.4.019
  3. B. Shin & H. Jeon. (2018). A Study on Disaster Information Support using Big Data. Journal of the Korea Convergence Society, 9(8), 25-32. DOI : 10.15207/JKCS.2018.9.8.025
  4. M. Chen, X. Shi, Y. Zhang, D. Wu & M. Guizani. (2017). Deep Features Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network. IEEE Transactions on Big Data, 1-1. DOI : 10.1109/TBDATA.2017.2717439
  5. A. Liu, Y. Lu, M. Chen & Y. Su. (2017). Mitosis Detection in Phase Contrast Microscopy Image Sequences of Stem Cell Populations: A Critical Review. IEEE Transactions on Big Data, 3(4), 443-457. DOI : 10.1109/TBDATA.2017.2721438
  6. M. Hosseini, D. Pompili, K. Elisevich & H. Soltanian-Zadeh. (2017). Optimized Deep Learning for EEG Big Data and Seizure Prediction BCI via Internet of Things. IEEE Transactions on Big Data, 3(4), 392- 404. DOI : 10.1109/TBDATA.2017.2769670
  7. Y. Li, J. Zhang, Z. Ma & Y. Zhang. (2020). Clustering Analysis in the Wireless Propagation Channel with a Variational Gaussian Mixture Model. IEEE Transactions on Big Data, 6(2), 223-232. DOI : 10.1109/TBDATA.2018.2840696
  8. J. Huang, C. Wang, L. Bai, J. Sun, Y. Yang, J. Li, O. Tirkkonen & M. Zhou. (2020). A Big Data Enabled Channel Model for 5G Wireless Communication Systems. IEEE Transactions on Big Data, 6(2), 211 - 222. DOI : 10.1109/TBDATA.2018.2884489
  9. E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar. (2015). Petuum: A New Platform for Distributed Machine Learning on Big Data, IEEE Transactions on Big Data, 1(2), 49-67. DOI : 10.1109/TBDATA.2015.2472014
  10. S. Jiang, J. Ferreira & M. C. Gonzalez. (2017). Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore. IEEE Transactions on Big Data, 3(2), 208-219. DOI: 10.1109/TBDATA.2016.2631141
  11. H. Lee, Y. Kim, & K. Kim. (2018). Implement of MapReduce-based Big Data Processing Scheme for Reducing Big Data Processing Delay Time and Store Data. Journal of the Korea Convergence Society, 9(10), 13 - 19. DOI : 10.15207/JKCS.2018.9.10.013
  12. J. Hu. (2018). Big Data Analysis of Criminal Investigations. 2018 5th International Conference on Systems and Informatics (ICSAI). DOI : 10.1109/ICSAI.2018.8599305
  13. S. Khan, F. Ansari, H. A. Dhalvelkar & S. Computer. (2017). Criminal investigation using Call Data Records (CDR) through Big Data technology. 2017 International Conference on Nascent Technologies in Engineering (ICNTE). DOI: 10.1109/ICNTE.2017.7947942
  14. S. Sathyadevan, M. S. Devan, S. S. Gangadharan. (2014). Crime analysis and prediction using data mining. 2014 First International Conference on Networks & Soft Computing (ICNSC2014). DOI : 10.1109/CNSC.2014.6906719
  15. J. H. Park, G. H. Cha, K. H. Kim, D. C. Lee, K. J. Son & J. Y. Kim. (2015). Implementation of Crime Prediction Algorithm based on Crime Influential Factors. Journal of Satellite, Information and Communications, 10(2), 40-45.