• 제목/요약/키워드: Intermetallic reactions

검색결과 41건 처리시간 0.022초

WETTING PROPERTIES AND INTERFACIAL REACTIONS OF INDIUM SOLDER

  • Kim, Dae-Gon;Lee, Chang-Youl;Hong, Tae-Whan;Jung, Seung-Boo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.475-480
    • /
    • 2002
  • The reliability of the solder joint is affected by type and extent of the interfacial reaction between solder and substrates. Therefore, understanding of intermetallic compounds produced by soldering in electronic packaging is essential. In-based alloys have been favored bonding devices that demand low soldering temperatures. For photonic and fiber optics packaging, m-based solders have become increasingly attractive as a soldering material candidate due to its ductility. In the present work, the interfacial reactions between indium solder and bare Cu Substrate are investigated. For the identification of intermetallic compounds, both Scanning Electron Microscopy(SEM) and X-Ray Diffraction(XRD) were employed. Experimental results showed that the intermetallic compounds, such as Cu$_{11}$In$_{9}$ was observed for bare Cu substrate. Additionally, the growth rate of these intermetallic compounds was increased with the reaction temperature and time. We found that the growth of the intermetallic compound follows the parabolic law, which indicates that the growth is diffusion-controlled.d.

  • PDF

자전고온반응에 의한 적층복합재료의 제조공정 (Fabrication Process of Laminated Composites by Self-propagating High-temperature Synthesis Reaction)

  • 김희연;정동석;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.155-158
    • /
    • 2002
  • Fabrication process of metal/intermetallic laminated composites by using self-propagating high temperature synthesis(SHS) reactions between Ni and Al elemental metal foils have been investigated. Al foils were sandwiched between Ni foils and heated in a vacuum hot press to the melting point of aluminium. SHS reaction kinetics was thermodynamically analyzed through the final volume fraction of the unreacted Al related with the initial thickness ratio of Ni:Al and diffusion bonding stage before SHS reaction. Thermal aging of laminated composites resulted in the formation of functionally gradient series of intermetallic phases. Microstructure showed that the main phases of intermetallics were NiAl and $Ni_3Al$ having higher strength at room and high temperatures. The volume fractions of intermetallic phases were measured as 82.4, 58.6, 38.4% in 1:1, 2:1, 4:1 initial thickness ratio of Ni:Al.

  • PDF

자전고온반응에 의한 금속간화합물/금속 적층복합재료의 기계적 특성 (Mechanical Properties of Intermetallic/Metal Laminated Composite by SHS Reaction)

  • 김희연;정동석;;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.60-63
    • /
    • 2002
  • Metal/intermetallic laminated composites have been manufactured by SHS reactions between Ni and Al elemental metal foils. Microstructure showed that the intermetallic volume fraction was 55%, 45%, 35% in the 1:1, 2:1, 4:1 thickness ratio(Ni:Al) specimen and the main phases of the intermetallic were transformed from $Ni_2Al_3$ to NiAl when the thickness ratio was increased. Tensile strength and elongation were increased when the volume fraction of Ni metallic phase was increased. Under assumptions of isostrain condition, the tensile strength of metal/intermetallic laminated composites didn't obey the ROM due to the thermal residual stress and this was confirmed by X-ray residual stress analysis. Fracture toughness results by the SENB test showed R-curves with upward curvature based on LSB condition. Bridging stress based on LSB condition was determined by the curve fitting analysis, In-situ observed microstructure during fracture test showed that the various bridging mechanism such as crack bridging, crack branching and ductile failure of metallic layer were occurred

  • PDF

전해 도금된 주석 솔더 범프의 계면 반응과 전단 강도에 미치는 UBM의 효과 (Effect of Under Bump Metallization (UBM) on Interfacial Reaction and Shear Strength of Electroplated Pure Tin Solder Bump)

  • 김유나;구자명;박선규;정승부
    • 대한금속재료학회지
    • /
    • 제46권1호
    • /
    • pp.33-38
    • /
    • 2008
  • The interfacial reactions and shear strength of pure Sn solder bump were investigated with different under bump metallizations (UBMs) and reflow numbers. Two different UBMs were employed in this study: Cu and Ni. Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) were formed at the bump/Cu UBM interface, whereas only a Ni3Sn4 IMC was formed at the bump/Ni UBM interface. These IMCs grew with increasing reflow number. The growth of the Cu-Sn IMCs was faster than that of the Ni-Sn IMC. These interfacial reactions greatly affected the shear properties of the bumps.

INTERFACIAL REACTIONS BETWEEN SN-58MASS%BI EUTECTIC SOLDER AND (CU, ELECTROLESS NI-P/CU)SUBSTRATE

  • Yoon, Jeong-Won;Lee, hang-Bae;Park, Guang-Jin;Shin, Young-Eui;Jung, Seung-Boo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.487-492
    • /
    • 2002
  • The growth kinetics of intermetallic compound layers formed between eutectic Sn-58Bi solder and (Cu, electroless Ni-P/Cu) substrate were investigated at temperature between 70 and 120 C for 1 to 60 days. The layer growth of intermetallic compound in the couple of the Sn-58Bi/Cu and Sn-58Bi/electroless Ni-P system satisfied the parabolic law at given temperature range. As a whole, because the values of time exponent (n) have approximately 0.5, the layer growth of the intermetallic compound was mainly controlled by volume diffusion over the temperature range studied. The apparent activation energies of Cu$_{6}$Sn$_{5}$ and Ni$_3$Sn$_4$ intermetallic compound in the couple of the Sn-58Bi/Cu and Sn-58Bi/electroless Ni-P were 127.9 and 81.6 kJ/mol, respectively.ely.

  • PDF

Au wire와 Al pad사이의 IMC(Intermetallic Compound) 형성에 의한 수명예측 (Lifetime Estimation due to IMC(Intermetallic Compound) formation between Au wire and Al pad)

  • 손정민;장미순;곽계달
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1295-1300
    • /
    • 2008
  • During the manufacturing and the service life of Au-Al wire bonded electronic packages, the ball bonds experience elevated temperatures and hence accelerated thermal diffusion reactions that promote the transformation of the Au-Al phases and the IMC growth. In this paper, the IC under high temperature storage (HTS) tests at $175^{\circ}C,\;200^{\circ}C$, and $250^{\circ}C$ are meticulously investigated. Thermal exposure resulted in the IMC growth, Kirkendall void and the crack of the Au-Al phases. The crack propagation occurs resulting in the failure of the Au-Al ball bonds. As the IC was exposed at the high temperature, decreased in the lifetime.

  • PDF

FABRICATION OF Mo-Si-B INTERMETALLIC COMPOUND POWDERS UNDER DIFFERENT HEAT TREATMENT CONDITIONS

  • JUNG HYO PARK;SEONG LEE;DONGHOON KIM;YOUNGMOO KIM;SUNG HO YANG;SUNG HO LEE
    • Archives of Metallurgy and Materials
    • /
    • 제63권3호
    • /
    • pp.1509-1512
    • /
    • 2018
  • In this research, we investigated the effects of reduction atmospheres on the creation of the Mo-Si-B intermetallic compounds (IMC) during the heat treatments. For outstanding anti-oxidation and elevated mechanical strength at the ultrahigh temperature, we fabricated the uniformly dispersed IMC powders such as Mo5SiB2 (T2) and Mo3Si (A15) phases using the two steps of chemical reactions. Especially, in the second procedure, we studied the influence of the atmospheres (e.g. vacuum, argon, and hydrogen) on the synthesis of IMCs during the reduction. Furthermore, the newly produced IMCs were observed by SEM, XRD, and EDS to identify the phase of the compounds. We also calculated an amount of IMCs in the reduced powders depending on the atmosphere using the Reitveld refinement method. Consequently, it is found that hydrogen atmosphere was suitable for fabrication of IMC without other IMC phases.

고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조 (Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing)

  • 김연욱;윤영목
    • 한국재료학회지
    • /
    • 제18권3호
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.

자전고온반응에 의한 금속간화합물/금속 적층복합재료의 제조공정변수가 미세조직에 미치는 영향 (The Effect of Fabrication Process Parameters on the Microstructures of Intermetallic/Metal Laminated Composite by Self-propagating High-temperature Synthesis)

  • 김희연;정동석;홍순형
    • Composites Research
    • /
    • 제16권3호
    • /
    • pp.68-74
    • /
    • 2003
  • 본 논문에서는 Ni과 Al 금속박판 사이의 자전고온반응을 이용한 금속간화합물/금속 적층복합재료의 제조시 제조공정 조건이 최종 미세조직에 미치는 영향을 연구하였다. 열분석을 통하여 Ni과 Al사이의 반응은 먼저 NiA1$_3$가 핵생성­성장 기구에 의해 생성된 후 다시 Ni$_2$A1$_3$로 확산변태됨을 확인하였다. 자전고온반응을 열역학적으로 해석하여 금속박판의 두께비(Ni:Al) 및 반응전 열처리와 반응후 미세조직에서 잔류한 Al의 부피분율과의 관계를 정립하였다. 후열처리 공정에 의해 Ni/Nl$_3$Al/NiAl의 적층구조와 각 두께비에서 82%(1:1), 59.5%(2:1), 40%(4:1)의 부피분율을 가지는 금속간화합물/금속적층복합재료를 얻을 수 있었다.

플립칩 공정시 반응생성물이 계면반응 및 접합특성에 미치는 영향 (Effects of Intermetallic Compounds Formed during Flip Chip Process on the Interfacial Reactions and Bonding Characteristics)

  • 하준석;정재필;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제19권2호
    • /
    • pp.35-39
    • /
    • 2012
  • 플립칩 접합시 발생하는 계면반응 거동과 접합특성을 계면에 생성되는 금속간화합물의 관점에서 접근하였다. 이를 위하여 Al/Cu와 Al/Ni의 under bump metallization(UBM) 층과 Sn-Cu계 솔더(Sn-3Cu, Sn-0.7Cu)와의 반응에 의한 금속간화합물의 형성거동 및 계면접합성을 분석하였다. Al/Cu UBM 상에서 Sn-0.7Cu 솔더를 리플로우한 경우에는 솔더/UBM 계면에서 금속간화합물이 형성되지 않았으며, Sn-3Cu를 리플로우한 경우에는 계면에서 생성된 $Cu_6Sn_5$ 금속간화합물이 spalling 되어 접합면이 분리되었다. 반면에 Al/Ni UBM 상에서 Sn-Cu계 솔더를 리플로우한 경우에는 0.7 wt% 및 3 wt%의 Cu 함량에 관계없이 $(Cu,Ni)_6Sn_5$ 금속간화합물이 계면에 형성되어 있었으며, 계면접합이 안정적으로 유지되었다.