DOI QR코드

DOI QR Code

Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing

고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조

  • Kim, Yeon-Wook (Department of Advanced Materials Engineering, Keimyung University) ;
  • Yun, Young-Mok (Nano Practical Application Center (NPAC))
  • 김연욱 (계명대학교 신소재공학과) ;
  • 윤영목 (나노부품실용화센터)
  • Published : 2008.03.25

Abstract

Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.

Keywords

References

  1. J. H. Walters and H. E Cline, Metall. Trans. A, 1, 1221-1229 (1970) https://doi.org/10.1007/BF02900234
  2. H. E. Deve, Acta Metall. et Mater., 38, 1491-1502 (1990) https://doi.org/10.1016/0956-7151(90)90117-Y
  3. F. E Heredia, M. Y. He, G. E. Lucas, A. G. Evans, H. E. Deve and D. Konitzer, Acta. Metall. Mater., 41, 505-511 (1993) https://doi.org/10.1016/0956-7151(93)90079-8
  4. W. O. Soboyejo, K. T. Venjateswara, S. M. Sastry and R.O. Richie, Metall. Trans. A, 24, 2249-2257 (1992)
  5. H. C. Cao and A. G. Evans, Acta Metall. et Mater., 39, 2997-3005 (1991) https://doi.org/10.1016/0956-7151(91)90032-V
  6. D. E. Alman, J. C. Rawers and J.A. Hawk, Metall. Mater. Trans. A, 26, 589-599 (1995) https://doi.org/10.1007/BF02663908
  7. D. E. Alman, K. G. Shaw, N. S. Stoloff and K. Rajan, Mater. Sci. Eng., 155, 85-93 (1992) https://doi.org/10.1016/0921-5093(92)90315-R
  8. R. G. Rowe and D. W. Kelly, Intermatallic matrix composites II, D. B. Miracle, D. W. Anton and J. A. Graveseds Eds., MRS, 411-416 (1992)
  9. D. E. Alman, J. A. Hawk, A. V. Petty and J. C. Rawers, J. Miner., 46, 31 (1994)
  10. J. C. Rawers and H. E. Maupin, J. Mater. Sci. Lett., 12, 637-639 (1993) https://doi.org/10.1007/BF00465576
  11. D.E. Alman, C.P. Dogan, Metall. Mater. Trans. A, 26, 2759-2763 (1995) https://doi.org/10.1007/BF02669433
  12. J. C. Rawerts, J. S. Hansen, J. A. Hawk and D. E. Alman, J. Mater. Sci. Lett., 13, 1357-1360 (1994) https://doi.org/10.1007/BF00624495
  13. D. E. Alman and N. S. Stoloff, Int. J. Powder Met., 27, 29-41 (1991)
  14. D. E. Alman and N. S. Stoloff, Scripta Metallurgica et Materialia, 28, 1525-1530 (1993) https://doi.org/10.1016/0956-716X(93)90586-H
  15. H. E. Maupin and J. C. Rawers, J. Mater. Sci. Lett., 12, 540-543 (1993) https://doi.org/10.1007/BF00819947
  16. C. T. Liu and J. O. Stiegler, Science, 226, 636 (1984) https://doi.org/10.1126/science.226.4675.636
  17. K. Vedular and J. R. Stephews, High-Temperature Ordered Intermetallic alloy II, N. S. Stoloff, C. C. Koth, C. T. Liu and O. Izumi Eds., MRS, 181 (1987)
  18. J. B. Stephens, High-Temperature Ordered Intermetallic alloys, C. C. Koth, C. T. Liu and N. S. Stoloff Eds., MRS, 381 (1985)
  19. K. A. Philpot, Z. A. Munar and J. B. Holt, J. Mater. Sci., 22, 159-169 (1987) https://doi.org/10.1007/BF01160566
  20. M. Ouabdesselam and Z. A. Munar, J. Mater. Sci., 22, 1799-1907 (1987) https://doi.org/10.1007/BF01132409
  21. Z. A. Munir, Amer. Ceram. Soc. Bull., 67, 342 (1988)
  22. Y. W. Kim and B. K. Kim, J. Kor Inst. Met & Mater., 38, 51-56 (2000)
  23. T. B. Massalski, Binart Alloy Phase Diagram, J. L. Marray, S. H. Bennett and H. Baker Eds., ASM, Materials Park, 1, 175 (1986)