• Title/Summary/Keyword: Interleukin-7

Search Result 1,048, Processing Time 0.03 seconds

Anti-inflammatory Activity of Solvent Fractions from Ginseng Berry Extract in LPS-Induced RAW264.7 Cells (인삼열매추출물의 용매분획물이 LPS로 유도된 RAW264.7 세포에 대한 항염활성)

  • Lee, Ka Soon;Kim, Gwan Hou;Seong, Bong Jae;Kim, Sun Ick;Han, Seung Ho;Lee, Sox Su;Yang, Hui;Yoo, Yung Choon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.449-456
    • /
    • 2014
  • Anti-inflammatory activity of the extracts of ginseng berry (GBE) was investigated through the evaluation of its inhibitory effect on the production of inflammatory meditator, nitric oxide(NO), tumor necrocis factor-alpha (TNF-${\alpha}$), interleukin-6 (IL-6) in LPS-induced RAW264.7 macrophage cells. GBE was fractionated using n-hexane, chloroform, ethylacetate, buthanol and $H_2O$, sequentially. RAW264.7 cells were induced $100ng/m{\ell}$ of lipopolysaccharide (LPS) and treated with 0, 1.6, 8, 40 and $200{\mu}g/m{\ell}$ of GBE fractions. LPS-induced NO production on all of GBE fractions was inhibited with increasing added concentration of GBE fractions. Chloroform fraction of GBE was the most effective in inhibiting LPS-induced TNF-${\alpha}$ production. Hexane, chloroform and $H_2O$ fractions of GBE exhibit strong inhibition LPS-induced IL-6 production. Especially, $H_2O$ fractions of GBE was the most effective in inhibiting LPD-induced IL-6 production without significant cytotoxicity in RAW264.7 cells, and reduced the activation of mitogen-activated protein kinases (MAPK) and IkB phosphorylation. These results indicate that $H_2O$ fractions of GBE exhibits strong anti-inflammatory effects by inhibition of NF-kB by inhibition of p-38 on MAPK and IkB phosphorylation.

Ethanolic Extract of Chondria crassicaulis Inhibits the Expression of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in LPS-Stimulated RAW 264.7 Macrophages

  • Kim, Yeon-Kye;Jeong, Eun-Ji;Lee, Min-Sup;Yoon, Na-Young;Yoon, Ho-Dong;Kim, Jae-Il;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.275-282
    • /
    • 2011
  • Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been implicated in various inflammatory diseases. In this study, we investigated the anti-inflammatory activities of Chondria crassicaulis ethanolic extract (CCE) by measuring its effects on the expression of iNOS and COX-2 proteins in lipopolysaccharide (LPS)-treated RAW 264.7 murine macrophages. CCE significantly and dose-dependently inhibited the LPS-induced release of nitric oxide and prostaglandin $E_2$, and suppressed the expression of iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells, without causing any cytotoxicity. It also inhibited the production of the pro-inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 cells. Moreover, treatment with CCE strongly suppressed nuclear factor-${\kappa}B$ (NF-${\kappa}B$) promoter-driven expression in LPS-treated RAW 264.7 cells. CCE treatment blocked nuclear translocation of the p65 subunit of NF-${\kappa}B$ by preventing proteolytic degradation of inhibitor of ${\kappa}B-{\alpha}$. These results indicate that CCE regulates iNOS and COX-2 expression through NF-${\kappa}B$-dependent transcriptional control, and identifies potential candidates for the treatment or prevention of inflammatory diseases.

Anti-inflammatory Effects of Pyropia yezoensis Extract in LPS-stimulated RAW 264.7 cells (방사무늬 김(Pyropia yezoensis) 추출물에 의한 RAW 264.7 대식세포의 항염증 효과)

  • Lee, Ji Young;Choi, Jeong Wook;Lee, Min Kyeong;Kim, Young Min;Kim, In Hye;Nam, Taek Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.757-764
    • /
    • 2014
  • Many researchers have studied algae as a source of material having potential biological activities, not least because many marine algae extracts have strong antioxidant properties. In this study, we investigated the anti-inflammatory effects of Pyropia yezoensis extract (PYE) on RAW 264.7 cells by measuring nitric oxide (NO), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase activity, inducible NOS (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-${\kappa}B$), interleukin-$1{\beta}$ (1L-$1{\beta}$), and tumor necrosis factor-alpha (TNF-${\alpha}$). PYE decreased the production of intracellular ROS dose-dependently and increased SOD and catalase activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. PYE significantly suppressed the production of NO and reduced the expression of iNOS, COX-2, and NF-${\kappa}B$. PYE treatment also inhibited the production of IL-$1{\beta}$ and TNF-${\alpha}$ significantly and reduced the phosphorylation of Akt and MAPK significantly in LPS-stimulated RAW 264.7 cells. These results suggest that PYE has potential anti-oxidant and anti-inflammatory activities.

Anti-inflammatory Activities of Herbal Formulas for Sasang Constitutional Medicine (사상 체질 처방의 항염증 효능 비교 연구)

  • Lee, Jin-Ah;Ha, Hye-Kyung;Lee, Ho-Young;Jung, Da-Young;Lee, Jun-Kyoung;Huang, Dae-Sun;Shin, Hyeun-Kyoo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.4
    • /
    • pp.56-64
    • /
    • 2010
  • 1. Objectives 4 herbal formulas (Yanggyeoksanhwa-tang, Yeoldahanso-tang, Cheongsimyeonja-tang and Taeeumjowi-tang) were applied to investigate the anti-inflammatory activities. In many studies, plant-derived anti-inflammatory efficacies have been investigate for their potential inhibitory effects on lipopolysaccharide (LPS)-stimulated macrophages. This study was performed to examine the anti-inflammatory activities of 4 herbal formulas on LPS-stimulated RAW 264.7 cells. 2. Methods The productions of nitric oxide (NO), prostaglandin (PG)$E_2$, interleukin(IL)-6 and tumor necrosis factor (TNF)-${\alpha}$ were examined in the presence of the 4 herbal formulas in RAW 264.7 cells. The cells were incubated with LPS 1 ${\mu}g/mL$ and 4 herbal formulas for 18 hrs. The anti-inflammatory activity of 4 herbal formulas were investigate by carrageenin-induced paw edema in rats. The paw volume was measured at 2 and 4 hrs following carrageenininduced paw edema in rats. 3. Results Yanggyeoksanhwa-tang and Cheongsimyeonja-tang showed inhibitory effect on $PGE_2$ production in LPS-stimulated RAW 264.7 cells and a reduction in carrageenin-induced paw edema on rats. Yanggyeoksanhwa-tang showed inhibitory effect on IL-6 in LPS-stimulated RAW 264.7 cells. 4 herbal formulas not affect on NO and TNF-${\alpha}$ inhibition in LPS-stimulated RAW 264.7 cells. 4. Conclusions These results suggested that Yanggyeoksanhwa-tang and Cheongsimyeonja-tang have anti-inflammatory activity.

Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-${\kappa}B$ and MAPK activation in RAW 264.7 cells

  • Yoon, Weon-Jong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.13-13
    • /
    • 2010
  • In the present study, the chemical constituents of Artemisia fukudo essential oil (AFE) were investigated using GC-MS. The major constituents were ${\alpha}$-thujone (40.28%), ${\beta}$-thujone (12.69%), camphor (6.95%) and caryophyllene (6.01%). We also examined the effects of AFE on the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-IL-$1{\beta}$ (IL-$1{\beta}$), and IL-6 in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Western blotting and RT-PCR analyses indicated that AFE has potent dose-dependent inhibitory effects on pro-inflammatory cytokines and mediators. We investigated the mechanism by which AFE inhibits NO and $PGE_2$ by examining the level of nuclear factor-${\kappa}B$ (NF-${\kappa}B$: p50 and p65) activation within the mitogen-activated protein kinase (MAPK: ERK, JNK and p38) pathway, which is an inflammation induced signal pathway in RAW 264.7 cells. AFE inhibited LPS-induced ERK, JNK and p38 phosphorylation. Furthermore, AFE inhibited the LPS-induced phosphorylation and degradation of $I{\kappa}B-{\alpha}$, which is required for the nuclear translocations of the p50 and p65 NF-${\kappa}B$ subunits in RAW 264.7 cells. Our results suggest that AFE might exert an anti-inflammatory effect by inhibiting the expression of pro-inflammatory cytokines. Such an effect is mediated by a blocking of NF-${\kappa}B$ activation which consequently inhibits the generation of inflammatory mediators in RAW 264.7 cells. AFE may be useful for treating inflammatory diseases.

  • PDF

Anti-inflammatory Effects of Sam-chul-kun-bi-tang

  • Lee, Jin-Ah;Ha, Hye-Kyung;Jung, Da-Young;Lee, Ho-Young;Lee, Nam-Hun;Lee, Jun-Kyoung;Huang, Dae-Sun;Shin, Hyeun-Kyoo
    • The Journal of Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Objective: To derive information on the efficacy of Sam-chul-kun-bi-tang (SKT), by evaluating its anti-inflammatory effect. SKT is a widely-used herbal formula in traditional Korean medicine. In man y studies, plant-derived anti-inflammatory efficacies have been investigated for their potential inhibitory effects on lipopolysaccharide (LPS)-stimulated macrophages. This study was performed to examine the anti-inflammatory effects of SKT extract on LPS-stimulated RAW 264.7 cells. Methods: The production of nitric oxide (NO), prostaglandin $(PG)E_2$, tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6 were examined in a macrophage cell line, RAW 264.7 cells, in the presence of SKT. RAW 264.7 cells were incubated with LPS 1 ${\mu}g/mL$ and SKT for 18 hrs. The anti-inflammatory activity of SKT was investigated by carrageenan-induced paw edema in rats. The paw volume was measured at 2 and 4 hrs following carrageenan-induced paw edema in rats. Results: SKT showed inhibitory effect on $PGE_2$, TNF-$\alpha$ and IL-6 in LPS-stimulated RAW 264.7 cells. But SKT was not inhibitory effect on NO by LPS-stimulated RAW 264.7 cells. Administration of SKT (1 g/kg) also showed a reduction in carrageenan-induced paw edema on rats. Conclusion: These results suggest that SKT has anti-inflammatory activities in both in vitro and in vivo models.

Expression Profiling of Lipopolysaccharide Target Genes in RAW264.7 Cells by Oligonucleotide Microarray Analyses

  • Huang, Hao;Park, Cheol-Kyu;Ryu, Ji-Yoon;Chang, Eun-Ju;Lee, Young-Kyun;Kang, Sam-Sik;Kim, Hong-Hee
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.890-897
    • /
    • 2006
  • In inflammatory responses, induction of cytokines and other immune regulator genes in macrophages by pathogen-associated signal such as lipopolysaccharide (LPS) plays a crucial role. In this study, the gene expression profile changes by LPS treatment in the macrophage/monocyte lineage cell line RAW264.7 was investigated. A 60-mer oligonucleotide microarray of which probes target 32381 mouse genes was used. A reverse transcription-in vitro translation labeling protocol and a chemileuminescence detection system were employed. The mRNA expression levels in RAW264.7 cells treated for 6 h with LPS and the control vehicle were compared. 747 genes were up-regulated and 523 genes were down-regulated by more than 2 folds. 320 genes showing more than 4-fold change by LPS treatment were further classified for the biological process, molecular function, and signaling pathway. The biological process categories that showed high number of increased genes include the immunity and defense, the nucleic acid metabolism, the protein metabolism and modification, and the signal transduction process. The chemokine-cytokine signaling, interleukin signaling, Toll receptor signaling, and apoptosis signaling pathways involved high number of genes differentially expressed in response to LPS. These expression profile data provide more comprehensive information on LPS-target genes in RAW264.7 cells, which will be useful in comparing gene expression changes induced by extracts and compounds from anti-inflammatory medicinal herbs.

Anti-inflammatory Effect of Cultivated Wild Panax ginseng Extracts at Various Ages in RAW264.6 Macrophages (RAW264.7 대식세포주에서 근령별 산양삼 추출물의 항염증 효과)

  • Lee, Geun;Na, Guihwan;Kim, Wooki;Baik, Mooyeol;Lee, Hyungjae;Hwang, Jae-Kwan
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.201-207
    • /
    • 2017
  • It is well-known that cultivated wild Panax ginseng has anti-inflammatory effect. However, a comparative study on cultivation period vs biofunctionality is currently lacking. In this study, 70% ethanol extracts of 3-years (yrs)-, 5-yrs-, or 7-yrs-old cultivated wild ginseng were evaluated for their inhibitory effects on RAW264.7 murine macrophages. Specifically, the production of pro-inflammatory cytokines (interleukin-6 [IL-6] and tumor necrosis factor-alpha [TNF-${\alpha}$]), the expression of surface proteins (CD80, CD86, and MHC-II), and the phagocytic properties were investigated. RAW264.7 cells were induced by 500 ng/mL of lipopolysaccharide (LPS) and treated with 0.1, 1, and 10 ppm of samples. LPS-induced IL-6, TNF-${\alpha}$ and surface proteins in all samples were down-regulated in a dose-dependent manner. Both IL-6 and TNF-${\alpha}$ were significantly reduced at 10 ppm of the 7-yrs-old sample compared to 10 ppm of 3-yrs- and 5-yrs-old samples. CD80 and CD86 were also reduced at 10 ppm of all samples, and there was no difference among samples. The phagocytosis has no difference except in 10 ppm of 3 yr-old sample. The results suggest that cultivated wild ginseng extract has anti-inflammatory effect without decreasing phagocytosis.

Anti-inflammatory Effect of Geumeunwha-san Water Extract on LPS-induced Raw 264.7 Cells (금은화산(金銀花散)의 LPS로 유도된 Raw 264.7 세포에서의 항염증 효과)

  • Kim, Yeon-Soo;Kim, Su-Jin;Jee, Seon-Young;Hwangbo, Min
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.34 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Objectives : The purpose of this study is to investigate the anti-inflammatory effect of Geumeunwha-san(GEHS) water extract in vitro. Methods : To evaluate the anti-inflammatory effect of GEHS, Raw 264.7 cells were pretreated with 10-300㎍/㎖ of GEHS for 1hr, and then exposed to 1㎍/㎖ of LPS. MTT assay was used to detect the cell viability. Productions of pro-inflammatory cytokines and NO were measured in culture media. By using immunoblot analysis, protein levels of iNOS and NF-𝜅B were determined. Results : In vitro study, cell viability assay on GEHS treatment of 10-300㎍/㎖ has no cytotoxicity in Raw 264.7 cells. Pretreated 100, 300㎍/㎖ of GEHS had significantly inhibited LPS-induced NO production. And also pretreatment of 100, 300㎍/㎖ GEHS had significantly decreased production of interleukin-6, -1𝛽 and tumor necrosis factor-𝛼 in LPS-activated Raw 264.7 cells. In addition, GEHS reduced LPS-mediated iNOS expression. Moreover I-𝜅B𝛼 expression was significantly induced by GEHS and NF-𝜅B expression was reduced by GEHS. Conclusions : These results suggest the clinical basis of GEHS for the treatment of inflammatory diseases.

Effect of Hibisci Flos on Inflammatory Cytokines Production in lipopolysaccaride-stimulated Raw 264.7 Macrophages (목근화(木槿花) 물추출물의 항염효능에 관한 연구)

  • Lee, Dong-Min;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.61-68
    • /
    • 2013
  • Objectives : Hibisci Flos has long been used for inflammatory diseases in traditional Korean medicine. However, little scientific investigation has been carried out. The aim of the present study is to investigate the effect of Hibisci Flos water extract (HF) on inflammatory cytokines production in Raw 264.7 cells stimulated by lipopolysaccaride (LPS). Method : HF was prepared by extracting with boiling water for 2 hours. We observed the cell viability of mouse macrophage Raw 264.7, the production of nitric oxide (NO) and the inflammatory cytokines such as interleukin (IL)-4, IL-5, IL-10, IL-15, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interferon-gamma (IFN-${\gamma}$), vascular endothelial growth factor (VEGF), granulocyte macrophage-colony stimulating factor (GM-CSF), and macrophage colony-stimulating factor (M-CSF) in Raw 264.7 cells stimulated by LPS. Result : The MTT assay was carried out to check the cellular toxicity of HF. No significant toxicity was observed in the experiment. HF significantly inhibited the increase of NO in the macrophages induced by LPS after 24 hour treatment. HF significantly inhibited the production of IL-4, IL-5, IL-10, IL-15, TNF-${\alpha}$, IFN-${\gamma}$, VEGF, GM-CSF and M-CSF in the Raw 264.7 cells induced by LPS in the concentration of $25{\mu}g/mL$ or higher. Conclusion : These results suggest that HF might have regulatory effects on LPS-induced inflammatory cytokine production, which might explain its beneficial effect in the treatment of inflammatory disease.