• Title/Summary/Keyword: Interleukin-7

Search Result 1,043, Processing Time 0.031 seconds

Croton hirtus L'Hér Extract Prevents Inflammation in RAW264.7 Macrophages Via Inhibition of NF-κB Signaling Pathway

  • Kim, Min Jeong;Kim, Ju Gyeong;Sydara, Kong Many;Lee, Sang Woo;Jung, Sung Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.490-496
    • /
    • 2020
  • Consumption of anti-inflammatory nutraceuticals may help treat or prevent inflammation-related illnesses such as diabetes, cardiovascular disease, and cancer. This study evaluated the effect of Croton hirtus L'Hér extract (CHE) on lipopolysaccharide (LPS)-induced nitric oxide (NO) production and nuclear factor kappa-B (NF-κB) signaling cascades. CHE significantly suppressed LPS-induced NO production and inducible nitric oxide synthase (iNOS) expression in RAW264.7 macrophages, although cyclooxygenase (COX)-2 expression was not affected. CHE also suppressed LPS-induced IκB kinase (IKK), IκB, and p65 phosphorylation in RAW264.7 cells. Western blot and immunofluorescence assays of cytosol and nuclear p65 and the catalytic subunit of NF-κB showed that CHE suppressed LPS-induced p65 translocation from the cytosol to the nucleus. CHE also suppressed LPS-induced Interleukin (IL)-6 and tumor necrosis factor (TNF)-α production in RAW264.7 cells. These results suggest that CHE prevents NO-mediated inflammation by suppressing NF-κB and inflammatory cytokines.

The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-κB pathways in RAW 264.7 macrophages

  • Heo, Seong-Yeong;Ko, Seok-Chun;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.14.1-14.8
    • /
    • 2018
  • The objective of this study was to investigate the anti-inflammatory effects of the pepsinolytic hydrolysate from the fish frame, Johnius belengerii, on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The J. belengerii frame hydrolysate (JFH) significantly suppressed nitric oxide (NO) secretion on LPS-stimulated RAW264.7 macrophages. Moreover, the JFH markedly inhibited the levels of protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the LPS-stimulated mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 was downregulated when cells were cultured with the JFH. The JFH significantly reduced the phosphorylation of c-Jun N-terminal kinase (JNK) and the translocation of nuclear factor-kappa B ($NF-{\kappa}B$) in macrophages. As the result, the JFH has the potential anti-inflammatory activity via blocking the JNK and $NF-{\kappa}B$ signal pathways.

Anti-oxidative and anti-inflammatory effects of aerial parts of Rumex japonicus Houtt. in RAW 264.7 cells (양제엽(羊蹄葉) 메탄올 추출물의 항산화 및 항염증 효과)

  • Cho, Hyun-Jin;Yun, Hyun-Jeong;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • Objectives : The aerial parts of Rumex japonicus Houtt. (RF) is used by traditional clinics to treat parasite infection in East asia. This study aims a verification of anti-oxidative and anti-inflammatory effects of RF methanol extract. Methods : Anti-oxidative effects of RF were measured by scavenging activities of DPPH, superoxide, nitric oxide (NO) and peroxynitrite radicals. And also scavenging activities of anti-oxidation in lipopolysaccharide (LPS)-treated RAW 264.7 cells were measured. The inhibitory effects against the production of inflammatory mediators including NO, prostaglandin $E_2$ ($PGE_2$), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and the translocation of nuclear factor (NF)-${\kappa}B$ in LPS-stimulated RAW 264.7 cells by RF were tested. Results : RF scavenged DPPH, superoxide, NO and peroxynitrite radicals, and RF (at $200{\mu}g/m{\ell}$) reduced the inflammatory mediators definitely. Conclusions : These results indicate that RF may be a potential drug source for oxidative stress related inflammatory diseases.

Anti-inflammatory Effects of Belamcanda Chinensis Water Extract (사간 물 추출물의 항염증 효과)

  • Park, Sung-Joo;Kim, Soo-Kon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.410-415
    • /
    • 2010
  • The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Belamcanda chinensis (BC) on the RAW 264.7 cells. To evaluate the anti-inflammatory effects of BC, we examined the cytokine productions including nitric oxide (NO), interleukin (IL)-1b, IL-6 and tumor necrosis factor-a (TNF-a) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kB) using Western blot. BC inhibited LPS-induced production of NO, IL-6 and TNF-a but not of IL-1b in RAW 264.7 cells. BC respectively inhibited the activation of MAPKs such as c-Jun NH2-terminal kinase (JNK) and p38 but not of extracelluar signal-regulated kinase (ERK 1/2) and NF-kB in the LPS-stimulated RAW 264.7 cells. Taken together, Our results showed that BC down-regulated LPS-induced NO, IL-6 and TNF-a productions mainly through JNK and p38 MAPK pathway.

Effects of Dioscorea daemona Roxb. Stem Extract on the Inflammatory Responses, Antioxidant System and Lipid Levels in Vivo and the Production of Inflammatory Mediators in RAW264.7 Cells (Dioscorea daemona Roxb. (Stem) 추출물이 Rat의 염증반응 및 항산화 체계에 미치는 영향과 RAW264.7 세포주의 염증성 매개물 생성에 미치는 영향)

  • Choi Eun-Mi;Koo Sung-Ja
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.6
    • /
    • pp.707-716
    • /
    • 2005
  • 본 연구에서는 다양한 동물 모델을 사용하여 Dioscorea daemona Roxb. 줄기 메탄을 추출물(DD)의 항염증 활성을 측정하였으며 DD가 생체내에서 항산화 체계의 변화를 유도할 수 있는지도 살펴보았다. DD를 200mg/kg용량으로 3주간 경구투여하였을 때 동물실험모델에서 항염증 및 type IV 알레르기 억제 효과를 나타내었으며 혈청의 Catalase 활성, 지질 과산화, TG 및 HDL cholesterol 수치가 영향을 받았다. DD와 이를 클로로포름과 부탄올로 순차적으로 분획하여 얻은 fraction이 lipopolysaccharide(LPS)로 유도한 RAW264.7 대식세포주의 nitric oxide(NO), prostaglandin $E_2(PGE_2)$, tumor necrosis $factor-\alpha(TNF-\alpha)$, interleukin 6(IL6)의 생성을 억제하는지도 연구하였다. DD와 그 분획물들은 $4\~100{\mu}g/mL$ 농도에서 세포 독성을 나타내지 않고 LPS가 유도한 RAW264.7 세포주의 NO, $TNF-\alpha$, IL-6 생성을 억제하였다. LPS가 유도한 $PGE_2$ 생성은 DD의 클로로포름 분획에서 유의적으로 감소하였다(p<0.05). 따라서 Dioscorea daemona 추출물은 대식세포의 염증성 매개물의 억제를 통하여 항염증 활성을 나타내는 것으로 사료된다.

  • PDF

Anti-inflammatory effect of Arctium minus on LPS-stimulated RAW 264.7 cells

  • Yang, Hye-Ji;Jang, Min-Hye;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.115-115
    • /
    • 2019
  • Arctium minus (AM), commonly known as lesser burdock, is a dried fruit (seed) of Aructium lappa L. that belong to Asteraceae. It has been used traditionally as herbal medicine because of its anti-inflammatory effects, and it has been applied to treat various diseases like allergies, skin aging, hyperlipidemia and urinary stone. In this study, we investigated the inhibitory effects of AM on the production of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Pre-treatment of the RAW 264.7 cells with AM considerably inhibited and reduced production of Nitric Oxide (NO) and pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and also shows suppression of nuclear factor-kappa B (NF-${\kappa}B$) translocation. In addition, AM treatment considerably reduced phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. Our results indicate that the AM has potential to inhibit inflammation through suppressing production of inflammatory mediators via both the NF-${\kappa}B$ and MAPK signaling pathway. We therefore suggest that AM might be effective therapeutics for the treatment of various inflammatory diseases.

  • PDF

Immunostimulatory Activity of Hibiscus syriacus L. Leaves in Mouse Macrophages, RAW264.7 cells, and Immunosuppressed Mice

  • Na Gyeong Geum;Ju Hyeong Yu;So Jung Park;Min Yeong Choi;Jae Won Lee;Gwang Hun Park;Hae-Yun Kwon;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.697-703
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

Immune-Enhancing Effect of Hibiscus syriacus Leaves in RAW264.7 Cells and Cyclophosphamided-induced Immunosuppressed Mice

  • Seung Woo Im;Hyeok Jin Choi;Ju-Hyeong Yu;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.92-92
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

  • PDF

Stable Transmission and Continuous Expression of Human Interleukin-10 Transgene in the Offspring of Transgenic Mice (형질전환 생쥐의 후대에서 인간 Interleukin-10 유전자의 안정적 전이와 지속적인 발현)

  • Zheng Z. Y.;Koo D. B.;Han Y. M.;Lee K. K.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.203-207
    • /
    • 2004
  • The transgenic mice carrying human Interleukin-10 (hIL-10) gene in conjunction with bovine (3 -casein promoter express hIL-10 in milk during lactation. In this study, stability of germ line transmission and expression of hIL-10 transgene integrated into host chromosome were monitored up to generation F8 of transgenic mice. When male mouse of generation F8 was crossbred with normal females, approximately half of offspring (50.9±5.8%) were identified as transgenic mice. Generation F9 to F15 mice also showed similar transmission rates (66.0±20.1%, 61.5±16.7%, 41.1±8.4%, 40.7±20.3%, 61.3±10.8%, 49.2±18.8% and 43.8±25.9%, respectively), implying that hIL-10 transgene can be transmitted stably up to long term generation in the transgenic mice. Expression levels of human IL-10 from milk of generation F9 to F14 mice were 3.6± 1.2 mg/ml, 4.2±0.9 mg/ml, 5.7±1.5 mg/ml, 6.3±3.5 mg/ml, 6.8±4.5 mg/ml and 6.8±3.1 mg/ml, respectively, which was showed high-level expression compared with that of generation F1 (1.6 mg/ml) mice. In conclusion, our results suggest that transgenic mice can be continuously passed their transgenes to the progeny through the breeding program with the same productivity of human IL-10 protein in their milk.

Inhibitory Effect of Phellinus Igniarius water extract on TNF-$\alpha$, IL-1$\beta$, IL-6 and Nitric Oxide Production in lipopolysaccharide - activated Raw 264.7 cells (상황 물추출물이 LPS로 유도된 Raw 264.7 cell에서의 TNF-$\alpha$, IL-1$\beta$, IL-6 및 Nitric Oxide production에 미치는 영향)

  • Kim Sang Chan;Jung Youn Suk;Lee Jae Ryung;Kim Young Woo;Byun Boo Hyeong;Kwon Teag Kyu;Suh Seong Il;Byun Sung Hui;Kwon Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.880-886
    • /
    • 2004
  • Phellinus igniarius has been clinically used for the treatment of hemorrhoidal fistula, dysmenorrhea and the prevention of cancer in traditional oriental medicine. Recent studies showed that Phellinus igniarius produced anti-cancer, anti-metastasis and immuno-modulatory effects, There is lack of studies regarding the effects of Phellinus igniarius on the immunological activities. The present study was conducted to evaluate the effect of Phellinus igniarius on the regulatory mechanism of cytokines and nitric oxide (NO) for the immunological activities in Raw 264,7 cells. After the treatment of Phellinus igniarius water extract, cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. COX-2 and iNOS were determined by Immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results provided evidence that Phellinus igniarius inhibited the production of nitrite and nitrate (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and the activation of phospholylation of inhibitor κBα (p-IκBα) in Raw 264.7 cells activated with lipopolysaccharide (LPS). These findings suggest that Phellinus igniarius can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.