Anti-inflammatory Effects of Belamcanda Chinensis Water Extract

사간 물 추출물의 항염증 효과

  • Park, Sung-Joo (Department of Herbology, College of Oriental Medicine, Wonkwang University) ;
  • Kim, Soo-Kon (Deparment of Radiation Oncology, Kangwon National University Hospital)
  • 박성주 (원광대학교 한의과대학 본초학교실) ;
  • 김수곤 (강원대학교병원 방사선종양학과)
  • Received : 2010.05.25
  • Accepted : 2010.06.04
  • Published : 2010.06.25

Abstract

The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Belamcanda chinensis (BC) on the RAW 264.7 cells. To evaluate the anti-inflammatory effects of BC, we examined the cytokine productions including nitric oxide (NO), interleukin (IL)-1b, IL-6 and tumor necrosis factor-a (TNF-a) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kB) using Western blot. BC inhibited LPS-induced production of NO, IL-6 and TNF-a but not of IL-1b in RAW 264.7 cells. BC respectively inhibited the activation of MAPKs such as c-Jun NH2-terminal kinase (JNK) and p38 but not of extracelluar signal-regulated kinase (ERK 1/2) and NF-kB in the LPS-stimulated RAW 264.7 cells. Taken together, Our results showed that BC down-regulated LPS-induced NO, IL-6 and TNF-a productions mainly through JNK and p38 MAPK pathway.

Keywords

References

  1. 신민교. 임상본초학. 서울, 영림사, p 489, 2002.
  2. Pan, C.H., Kim, E.S., Jung, S.H., Nho, C.W., Lee, J.K. Tectorigenin Inhibits IFN- /LPS-induced Inflammatory Responses in Murine Macrophage RAW 264.7 Cells. Arch Pharm Res, 31: 1447-1456, 2008. https://doi.org/10.1007/s12272-001-2129-7
  3. Thelen, P., Scharf, J.G., Burfeind, P., Hemmerlein, B., Wuttke, W., Spengler, B., Christoffel, V., Ringert, R.H., Wuttke, D.S. Tectorigenin and other phytochemicals extracted from leopard lily Belamcanda chinensis affect new and established targets for therapies in prostate cancer. Carcinogenesis, 26: 1360-1367, 2005. https://doi.org/10.1093/carcin/bgi092
  4. Woeniaka, D., Oszmia-skib, J., Matkowski, A. Antimutagenic and antioxidant activity of the extract from Belamcanda chinensis (L.) DC, Acta Poloniae Pharmaceutica, 63: 213-218, 2006.
  5. Kundu, J.K., Surh, Y.J. Inflammation: gearing the journey to cancer, Mutat Res 659: 15-30, 2008. https://doi.org/10.1016/j.mrrev.2008.03.002
  6. Guha, M., Mackman, N. LPS induction of gene expression in human monocytes. Cellular Signal, 13: 85-94, 2001. https://doi.org/10.1016/S0898-6568(00)00149-2
  7. Kubes, P., Mccafferty, D.M. Nitric oxide and intestinal inflammation. American J Medicine, 109: 150-158, 2000. https://doi.org/10.1016/S0002-9343(00)00480-0
  8. Lin, W.W., Karin, A. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest, 117: 1175-1183, 2007. https://doi.org/10.1172/JCI31537
  9. Nathan, C., Xie, Q.W. Regulation of biosynthesis of nitric oxide. J Biol Chem, 269: 13725-13728, 1994.
  10. Kwqamata, H., Ochiai, H., Mantani, N., Terasawa, K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am J Chin Med 28: 217-226, 2000. https://doi.org/10.1142/S0192415X0000026X
  11. Lee, B.G., Kim, S.H., Zee, O.P., Lee, K.R., Lee, H.Y., Han, J.W., Lee, H.W. Suppression of inducible nitric oxide synthase expression in RAW 264.7 macrophages by two-carboline alkaloids extracted from Melia azedarach. Eur J Pharmacol 406: 301-309, 2000. https://doi.org/10.1016/S0014-2999(00)00680-4
  12. Seo, W.G., Pae, H.O., Oh, G.S., Chai, K.Y., Yun, Y.G., Kwon, T.O., Chung, H.T. Inhibitory effect of ethyl acetate fraction from Cudrania tricuspidata on the expression of nitric oxide synthase gene in RAW 264.7 macrophages stimulated with interferon-and lipopolysaccharide. Gen Pharmacol 35: 21-28, 2000. https://doi.org/10.1016/S0306-3623(01)00086-6
  13. Chiou, W.F., Chou, C.J., Chen, C.F. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci 69: 625-635, 2001. https://doi.org/10.1016/S0024-3205(01)01154-7
  14. Seo, W.G., Pae, H.O., Oh, G.S., Kim, N.Y., Kwon, T.O., Shin, M.K., Chai, K.Y., Chung, H.T. The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW 264.7 macrophage. J Ethnophamacol 76: 119-123, 2001. https://doi.org/10.1016/S0378-8741(01)00220-3
  15. Chan, E.D., Riches, D.W. $IFN-_{\gamma}$ + LPS induction of iNOS is modulated by ERK, JNK/SAPK,and p38 mapk in a mouse macrophage cell line. Am J Physiol Cell Physiol, 280: C441-C450, 2001.
  16. Cobb, M.H., Goldsmith, E.J. Dimerization in MAP-kinase signaling. Trends Biochem Sci, 25: 7-9, 2000. https://doi.org/10.1016/S0968-0004(99)01508-X
  17. Celec, P. Nuclear factor kappa B-molecular biomedicine: the next generation. Biomed Pharmacother, 58: 365-371, 2004. https://doi.org/10.1016/j.biopha.2003.12.015
  18. Zhao, Q., Shepherd, E.G., Manson, M.E., Nelin, L.D., Sorokin, A., Liu, Y. The role of mitogen activated protein kinase phosphatase-1 in the response of alveolar macrophages to lipopolysaccharide: attenuation of proinflammatory cytokine biosynthesis via feedback control of p38. J Biol Chem, 280: 8101-8108, 2005.
  19. Ajizian, S.J., English, B.K., Meals, E.A. Specific inhibitors of p38 and extracellular signal regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis, 179: 939-944, 1999. https://doi.org/10.1086/314659
  20. Dong, Z., O'Brian, C.A., Fidler, I.J. Activation of tumoricidal properties in macrophages by lipopolysaccharide requires protein-tyrosine kinase activity. J Leukoc Biol, 53: 53-60, 1993.
  21. Zhu, Y.P. Chinese Materia Medica. Amsterdam Harewood Academic Publisher, pp 127-135, 1998.
  22. Shin, K.H., Kim, Y.P., Lim, S.S., Lee, S., Ryu, N., Yamada, M., Ohuchi, K. Inhibition of prostaglandin E2 production by the isoflavones tectorigenin and tectoridin isolated from the rhizomes of Belamcanda chinensis. Planta Med, 65: 776-777, 1999. https://doi.org/10.1055/s-2006-960868
  23. Wang, Q.L., Lin, M., Li, G.T. Antioxidative activity of natural isorhapontigenin. Jpn J Pharmacol 87: 61-66, 2001. https://doi.org/10.1254/jjp.87.61
  24. Jung, S.H., Lee, Y.S., Lee, S., Lim, S.S., Kim, Y.S., Ohuchi, K., Shin, K.H. Anti-angiogenic and anti-tumor activities of isoflavonoids from the rhizomes of Belamcanda chinensis. Planta Med 69: 617-622, 2003. https://doi.org/10.1055/s-2003-41125
  25. Bryan, N.S. Nitrite in nitric oxide biology: cause or consequence? A systems based review. Free Radic Biol Med, 41: 691-701, 2006. https://doi.org/10.1016/j.freeradbiomed.2006.05.019
  26. Tracey, K.J., Cerami, A. Tumor necrosis factor : a pleiotropic cytokine and therapetic target. Annual Reviews of Medicine, pp 45, 491-503, 1994. https://doi.org/10.1146/annurev.med.45.1.491
  27. Tracey, K.J., Beutler, B., Lowry, S.F., Merryweather, J., Wolper, S., Milsark, I.W., Hariri, R.J., Fahey, J.J., Zentella, A., Albert, J.D. Shock and tissue injury induced by recombinant human cachectin. Science, pp 232, 977-980, 1986. https://doi.org/10.1126/science.3754653
  28. Garrington, T.P., Johnson, G.L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol, 11: 211-218, 1999. https://doi.org/10.1016/S0955-0674(99)80028-3
  29. Seo, J.H., Lim, J.W., Kim, H., Kim, K.H. Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases. AP-1, and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. lab Invest, 84: 49-62, 2004. https://doi.org/10.1038/labinvest.3700010
  30. Lee, A.K., Sung, S.H., Kim, Y.C., Kim, S.G. Inhibition of lipopolysaccharide-inducible nitiric oxide synthase. TNF-a and COX-2 expression by suchinone effects on $I-{\kappa}Ba$ phosphorylation. C/EBP and AP-1 activation. British J Phamacol, 139: 11-20, 2003. https://doi.org/10.1038/sj.bjp.0705231
  31. Meng, F., Lowell, C.A. Lipopolysaccharide(LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinase Hck, Fgr, and Lyn. J Exp Med, 185(9):1661, 1997. https://doi.org/10.1084/jem.185.9.1661
  32. Kao, S.J., Lei, H.C., Kuo, C.T., Chang, M.S., Chen, B.C., Chang, Y.C. Lipoteichoic acid induce snuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology, 115: 366-374, 2005. https://doi.org/10.1111/j.1365-2567.2005.02160.x
  33. Meyer, C.F., Wang, X., Chang, C., Templeton, D., Tan, T.H. Interaction between c-Rel and the mitogen-activated protein kinase kinase 1 signaling cascade in mediating kappaB enhancer activation. J Biol Chem, 271: 8971-9876, 1996. https://doi.org/10.1074/jbc.271.15.8971