• 제목/요약/키워드: Interleukin-4 receptor

검색결과 196건 처리시간 0.026초

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

The Role of the Hydrophobic Group on Ring A of Chalcones in the Inhibition of Interleukin-5

  • Yang, Hyun-Mo;Shin, Hye-Rim;Cho, Soo-Hyun;Song, Gyu-Yong;Lee, In-Jeong;Kim, Mi-Kyeong;Lee, Seung-Ho;Ryu, Jae-Chun;Kim, Young-Soo;Jung, Sang-Hun
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.969-976
    • /
    • 2006
  • Novel chalcones were found as potent inhibitors of interleukin-5 (II-5). 1-(6-Benzyloxy-2-hydroxyphenyl)-3-(4-hydroxyphenyl)propenone (2a, 78.8% inhibition at $50\;{\mu}M,\;IC_{50}=25.3\;{\mu}M$) was initially identified as a potent inhibitor of IL-5. This activity is comparable to that of budesonide or sophoricoside (1a). The benzyloxy group appears to be critical for the enhancement of the IL-5 inhibitory activity. To identify the role of this hydrophobic moiety, cyclohexyloxy (2d), cyclohexylmethoxy (2c), cyclohexylethoxy (2e), cyclohexylpropoxy (2f), 2-methylpropoxy (2g), 3-methylbutoxy (2h), 4-methylpentoxy (2i), and 2-ethylbutoxy (2j) analogs were prepared and tested for their effects on IL-5 bioactivity. Compounds 2c ($IC_{50}=12.6\;{\mu}M$), 2d ($IC_{50}=12.2\;{\mu}M$), and 2i ($IC_{50}=12.3\;{\mu}M$) exhibited the most potent activity. Considering the cLog P values of 2, the alkoxy group contributes to the cell permeability of 2 for the enhancement of activity, rather than playing a role in ligand motif binding to the receptor. The optimum alkoxy group in ring A of 2 should be one that provides the cLog P of 2 in the range of 4.22 to 4.67.

Probiotics Inhibit Lipopolysaccharide-Induced Interleukin-8 Secretion from Intestinal Epithelial Cells

  • Oh, Hyun-Wook;Jeun, Gi-Hoon;Lee, Jin;Chun, Tae-Hoon;Kim, Sae-Hun
    • 한국축산식품학회지
    • /
    • 제32권4호
    • /
    • pp.434-440
    • /
    • 2012
  • It has been suggested that probiotics could be useful for the prevention of symptomatic relapse in patients with inflammatory bowel disease (IBD). Interleukin (IL)-8 has been well recognized as one of the pro-inflammatory cytokines that could trigger inflammation and epithelial barrier dysfunction. In this study, the anti-inflammatory effects of probiotics were investigated using a human epithelial cell line (HT-29). Probiotics from infant feces and kimchi were tested for their cytotoxicity and effects on adhesion to epithelial cells. The present results show that seven strains could form 70 % adhesion on HT-29. The probiotics used in this study did not affect HT-29 cell viability. To screen anti-inflammatory lactic acid bacteria, HT-29 cells were pretreated with live and heat-killed probiotics, and lipopolysaccharide (LPS) ($1{\mu}g/mL$) was then added to stimulate the cells. The cell culture supernatant was then used to measure IL-8 secretion by ELISA, and the cell pellet was used to determine IL-8 and toll-like receptor (TLR-4) mRNA expression levels by RT-PCR. Some probiotics (KJP421, KDK411, SRK414, E4191, KY21, and KY210) exhibited anti-inflammatory effects through the repression of IL-8 secretion from HT-29 cells. In particular, Lactobacillus salivarius E4191, originating from Egyptian infant feces, not only decreased IL-8 mRNA expression, but also decreased TLR-4 expression. These results indicate that Lactobacillus salivarius E4191 may have a protective effect in intestinal epithelial cells.

Contributory Role of BLT2 in the Production of Proinflammatory Cytokines in Cecal Ligation and Puncture-Induced Sepsis

  • Park, Donghwan;Ro, MyungJa;Lee, A-Jin;Kwak, Dong-Wook;Chung, Yunro;Kim, Jae-Hong
    • Molecules and Cells
    • /
    • 제44권12호
    • /
    • pp.893-899
    • /
    • 2021
  • BLT2 is a low-affinity receptor for leukotriene B4, a potent lipid mediator of inflammation generated from arachidonic acid via the 5-lipoxygenase pathway. The aim of this study was to investigate whether BLT2 plays any role in sepsis, a systemic inflammatory response syndrome caused by infection. A murine model of cecal ligation and puncture (CLP)-induced sepsis was used to evaluate the role of BLT2 in septic inflammation. In the present study, we observed that the levels of ligands for BLT2 (LTB4 [leukotriene B4] and 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid]) were significantly increased in the peritoneal lavage fluid and serum from mice with CLP-induced sepsis. We also observed that the levels of BLT2 as well as 5-lipoxygenase (5-LO) and 12-LO, which are synthesizing enzymes for LTB4 and 12(S)-HETE, were significantly increased in lung and liver tissues in the CLP mouse model. Blockade of BLT2 markedly suppressed the production of sepsis-associated cytokines (IL-6 [interleukin-6], TNF-α [tumor necrosis factor alpha], and IL-1β [interleukin-β] as well as IL-17 [interleukin-17]) and alleviated lung inflammation in the CLP group. Taken together, our results suggest that BLT2 cascade contributes to lung inflammation in CLP-induced sepsis by mediating the production of inflammatory cytokines. These findings suggest that BLT2 may be a potential therapeutic target for sepsis patients.

Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation

  • Zhu, Lirong;Huang, Yangliang;Hu, Yuming;Tang, Qian;Zhong, Yi
    • The Korean Journal of Pain
    • /
    • 제34권1호
    • /
    • pp.47-57
    • /
    • 2021
  • Background: Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms. Methods: An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of proand anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay. Results: Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn. Conclusions: The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.

IL-1 Receptor Antagonist Reduced Chemical-Induced Keratinocyte Apoptosis through Antagonism to IL-1α/IL-1β

  • Lee, Hyejin;Cheong, Kyung Ah;Kim, Ji-Young;Kim, Nan-Hyung;Noh, Minsoo;Lee, Ai-Young
    • Biomolecules & Therapeutics
    • /
    • 제26권4호
    • /
    • pp.417-423
    • /
    • 2018
  • Extracellular interleukin 1 alpha (IL-$1{\alpha}$) released from keratinocytes is one of the endpoints for in vitro assessments of skin irritancy. Although cells dying via primary skin irritation undergo apoptosis as well as necrosis, IL-$1{\alpha}$ is not released in apoptotic cells. On the other hand, active secretion has been identified in interleukin-1 receptor antagonist (IL-1ra), which was discovered to be a common, upregulated, differentially-expressed gene in a microarray analysis performed with keratinocytes treated using cytotoxic doses of chemicals. This study examined whether and how IL-1ra, particularly extracellularly released IL-1ra, was involved in chemically-induced keratinocyte cytotoxicity and skin irritation. Primary cultured normal adult skin keratinocytes were treated with cytotoxic doses of chemicals (hydroquinone, retinoic acid, sodium lauryl sulfate, or urshiol) with or without recombinant IL-1ra treatment. Mouse skin was administered irritant concentrations of hydroquinone or retinoic acid. IL-1ra (mRNA and/or intracellular/extracellularly released protein) levels increased in the chemically treated cultured keratinocytes with IL-$1{\alpha}$ and IL-$1{\beta}$ mRNAs and in the chemically exposed epidermis of the mouse skin. Recombinant IL-1ra treatment significantly reduced the chemically-induced apoptotic death and intracellular/extracellularly released IL-$1{\alpha}$ and IL-$1{\beta}$ in keratinocytes. Collectively, extracellular IL-1ra released from keratinocytes could be a compensatory mechanism to reduce the chemically-induced keratinocyte apoptosis by antagonism to IL-$1{\alpha}$ and IL-$1{\beta}$, suggesting potential applications to predict skin irritation.

동충하초 추출물이 생쥐 비장세포에 미치는 영향 (Research on Effects of Cordyceps Sinensis in Spleen Cells of Mouse.)

  • 이제영;노성수;서영배
    • 대한본초학회지
    • /
    • 제22권3호
    • /
    • pp.47-55
    • /
    • 2007
  • Objectives : This study was carried out to know the effect of Cordyceps sinensis(CS) on the immune inflammatory responses of spleen cells and function or immunocytes of the normal mouse. Methodes: We investigated effects of Cordyceps sinensis(CS) on normal immunocytes, gene expression of IL-12, IFN-$\gamma$ and surface-receptor expression of $CD3_{\epsilon}+$, CD4+, CD8+ and CD19+ cells were measured by PCR and FACS. Results : CS activated adhisive splenic cells morphologically as compared with the control group in the normal spleen cells of BALB/C mice. CS enhanced gene expression of interleukin-12 and interferon-gamma in a dose-dependent manner in the normal spleen cells of BALB/C mice. CS reduced the number of activating cells and surface-receptor expression of CD4+, CD8+ and CD19+. Conclusion : Cordyceps sinensis will be used as a stable remedium in the auto-immune diseases.

  • PDF

진피로부터 분리한 다당의 대식세포를 통한 면역증진 효과 (Immuno-Enhancing Effects through Macrophages of Polysaccharides Isolated from Citrus Peels)

  • 이경애;박혜령
    • 한국식품영양학회지
    • /
    • 제34권5호
    • /
    • pp.441-448
    • /
    • 2021
  • This study was designed to investigate the intracellular signaling pathways and immunoenhancing effect of macrophage activation by crude polysaccharides (CPP) extracted from citrus peels. CPP did not affect the cytotoxicity of RAW264.7 cells, but showed dose-dependent effects on cell viability. Also, CPP showed high production of chemokine (nitric oxide (NO)) and cytokines (interleukin (IL)-6 and tumor necrosis factor (TNF)-α). CPP increased IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) mRNA expression dose-dependently. CPP also strongly induced the phosphorylation of the ERK, p38, and IκBα pathways in RAW 264.7 cells. In anti-pattern recognition receptors (PRRs) experiments, the effect of CPP on NO production was strongly suppressed by neutralizing toll-like receptor (TLR)2, TLR4, and Dectin1 antibodies, whereas IL-6 and TNF-α production by CPP was mainly suppressed by mannose receptor (MR). Therefore, these results suggest that CPP treatment-induced NO production was regulated by the ERK, p38, and NF-κB pathways through TLR2, TLR4, and Dectin1 receptors, whereas IL-6 and TNF-α production was primarily regulated by the ERK, p38, and NF-κB pathways through MR receptors.

Genomic DNA Extracted from Lactiplantibacillus plantarum Attenuates Porphyromonas gingivalis Lipopolysaccharide (LPS)-Induced Inflammatory Responses via Suppression of Toll-Like Receptor (TLR)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor-κB (NF-κB) Signaling Pathways

  • Young Hyeon Choi;Bong Sun Kim;Seok-Seong Kang
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.938-947
    • /
    • 2023
  • In the present study, we aimed to examine the inhibition of genomic DNA from Lactiplantibacillus plantarum (LpDNA) on Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammatory responses in RAW264.7 cells. Pretreatment with LpDNA for 15 h significantly inhibited PgLPS-induced mRNA expression and protein secretion of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1. LpDNA pretreatment also reduced the mRNA expression of Toll-like receptor (TLR)2 and TLR4. Furthermore, LpDNA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the activation of nuclear factor-κB (NF-κB) induced by PgLPS. Taken together, these findings demonstrate that LpDNA attenuates PgLPS-induced inflammatory responses by regulating MAPKs and NF-κB signaling pathways through the suppression of TLR2 and TLR4 expression.

Therapeutic applications of ginseng for skeletal muscle-related disorder management

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Inho Choi
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.12-19
    • /
    • 2024
  • Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.