• Title/Summary/Keyword: Interference Image

Search Result 256, Processing Time 0.028 seconds

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

Double Encryption of Digital Hologram Based on Phase-Shifting Digital Holography and Digital Watermarking (위상 천이 디지털 홀로그래피 및 디지털 워터마킹 기반 디지털 홀로그램의 이중 암호화)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • In this Paper, Double Encryption Technology Based on Phase-Shifting Digital Holography and Digital Watermarking is Proposed. For the Purpose, we First Set a Logo Image to be used for Digital Watermark and Design a Binary Phase Computer Generated Hologram for this Logo Image using an Iterative Algorithm. And Random Generated Binary Phase Mask to be set as a Watermark and Key Image is Obtained through XOR Operation between Binary Phase CGH and Random Binary Phase Mask. Object Image is Phase Modulated to be a Constant Amplitude and Multiplied with Binary Phase Mask to Generate Object Wave. This Object Wave can be said to be a First Encrypted Image Having a Pattern Similar to the Noise Including the Watermark Information. Finally, we Interfere the First Encrypted Image with Reference Wave using 2-step PSDH and get a Good Visible Interference Pattern to be Called Second Encrypted Image. The Decryption Process is Proceeded with Fresnel Transform and Inverse Process of First Encryption Process After Appropriate Arithmetic Operation with Two Encrypted Images. The Proposed Encryption and Decryption Process is Confirmed through the Computer Simulations.

The measurement of Nano Scale film thickness using optical interferometry (광 간섭 현상을 이용한 나노 스케일의 유막두께 측정)

  • Yun, Young-Sun;Jeon, Pil-Soo;Kim, Hyun-Jung;Yoo, Jai-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3178-3182
    • /
    • 2007
  • The interferometer method with nano-scale spatial resolution has been developed in this study. To enhance the accuracy of the previous developed method, the 14 bit cooled CCD camera with 1280 by 980 spatial resolution was applied to the measurement. And optical alignment has been carried out on the highly accurate position sensors with 500nm resolution so as to be able to calibrate the detected interference image with the field of view. Also the measurements were applied to the ultra thin oil film between the Al coated cylinder mirror with 38.1mm radius and 0.5mm cover glass to verify the developed method. The measured result showed the good agreement with the used cylinder curvature with ${\pm}$5.18run uncertainty.

  • PDF

The Most Suitable Reference White Setting for Three-tube Projection HDTV (3관식 프로젝션 HDTV의 기준 백색 설정)

  • 정재영;구병준;권용대;이광순;송규익
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.239-242
    • /
    • 2000
  • The color television signal and color receivers should be balanced for the same value of reference white to achieve colorimetric fidelity and to minimize interference. The NTSC signal is balanced for white at 6774 K and most existing receivers are balanced between 6500 K and 10000 K for many reasons. In this paper, we analyze beam current ratio, lightness, and channel gain ratio according to the color temperature for the three-tube projection HDTV. We also propose the brighter reference white for the three-tube projection HDTV based on the Helmholtz-Kohlrausch effect and the optical resolution of the image. In computer simulation we confirmed the most suitable reference white using the proposed analysis method.

  • PDF

Development of Biological Cell Manipulation System using Visual Tracking Method

  • Lee, Geunho;Kang, Hyun-Jae;Kwon, Sang-Joo;Park, Gwi-Tae;Kim, Byungkyu
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2911-2914
    • /
    • 2003
  • Conventionally, biological manipulations have been performed manually with long training and pretty low success rates. To overcome this problem, a novel biological manipulation system has been developed to manipulate biological cells without any interference of a human operator, In this paper, we demonstrate a development of tole-autonomous Cell Manipulation System (CMS) using an image processing at a remote site. The CMS consists of two manipulators, a plane stage, and an optical microscope. We developed deformable template-model-matching algorithm for micro objects and pattern matching algorithm of end effect for these manipulators in order to control manipulators and the stage. Through manipulation of biological cells using these algorithms, the performance of the CMS is verified experimentally.

  • PDF

Applications of Digital Holography in Biomedical Microscopy

  • Kim, Myung-K.
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.77-89
    • /
    • 2010
  • Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

Experimental Study on the Dynamic Behaviour of Oil Seals (오일시일의 동적거동에 관한 실험적 연구)

  • 김청균;심우전
    • Tribology and Lubricants
    • /
    • v.11 no.3
    • /
    • pp.54-58
    • /
    • 1995
  • This paper deals with an experimental study on the dynamic behaviour of rubber oil seals when the interferences between the shaft and the seal lip as well as the dynamic eccentricities are present. The micro-separation of the sealing gap was observed with the aid of an image processing apparatus. The temperature of the seal lip edge, friction torque and the dynamic sealing gap profile are experimentally investigated for the initial interference and the shaft eccentricity. The data was simultaneously measured under the operation conditions. Experimental results show that, as the shaft speed is increased, the leakage of sealed fluids is increasing for a certain range of shaft speeds. The test data indicates that the shaft eccentricity clearly produces the gap separation between the shaft and the seal lip which is unable to follow the radial displacement of shaft as the shaft speed increases.

Image analysis of boundary surface using T-scanning Method (T-Scanning Method에 의한 접합 경계면의 화상해석)

  • 김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.60-65
    • /
    • 1998
  • Recently, It is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic Signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of Ultrasonic distance resolution in the opaque materials, provides useful information that cannot be obtained by a conventional measuring system. In the present research, considering a thin film below the limit of Ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic Signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness, sound velocity, and step height, regardless of interference phenomenon

  • PDF

Blind Signal Processing for Medical Sensing Systems with Optical-Fiber Signal Transmission

  • Kim, Namyong;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In many medical image devices, dc noise often prevents normal diagnosis. In wireless capsule endoscopy systems, multipath fading through indoor wireless links induces inter-symbol interference (ISI) and indoor electric devices generate impulsive noise in the received signal. Moreover, dc noise, ISI, and impulsive noise are also found in optical fiber communication that can be used in remote medical diagnosis. In this paper, a blind signal processing method based on the biased probability density functions of constant modulus error that is robust to those problems that can cause error propagation in decision feedback (DF) methods is presented. Based on this property of robustness to error propagation, a DF version of the method is proposed. In the simulation for the impulse response of optical fiber channels having slowly varying dc noise and impulsive noise, the proposed DF method yields a performance enhancement of approximately 10 dB in mean squared error over its linear counterpart.

Multiview Stereoscopic Display based on Volume Holographic Memory (체적 홀로그래픽 메모리를 이용한 다시점 스테레오스코픽 디스플레이)

  • 이승현;손광철;심원섭;양훈기;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.688-695
    • /
    • 2000
  • We present a multi-view autostereoscopic display system based on volume holographic storage technique. In this proposed system, the interference pattern of spatial multiplexed plane reference and angular multiplexed plane object beams are recorded into a photorefractive crystal, which plays a role of guiding object beams of multi-view images into the desired persfective directions. For reconstruction, object beams containing the desired multi-view image information, which satisfy Bragg matching condition, are illuminated in the time-division multiplexed manner onto the crystal. Then multiple stereoscopic images are Projected to the display plane for autostereoscopic 3D viewing.

  • PDF