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with Optical-Fiber Signal Transmission
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Abstract

In many medical image devices, dc noise often prevents normal diagnosis. In wireless capsule endoscopy systems, multipath fading
through indoor wireless links induces inter-symbol interference (ISI) and indoor electric devices generate impulsive noise in the received
signal. Moreover, dc noise, ISI, and impulsive noise are also found in optical fiber communication that can be used in remote medical
diagnosis. In this paper, a blind signal processing method based on the biased probability density functions of constant modulus error
that is robust to those problems that can cause error propagation in decision feedback (DF) methods is presented. Based on this property
of robustness to error propagation, a DF version of the method is proposed. In the simulation for the impulse response of optical fiber
channels having slowly varying dc noise and impulsive noise, the proposed DF method yields a performance enhancement of approx-
imately 10 dB in mean squared error over its linear counterpart.

Keywords: Optical links, Dc noise, Impulsive noise, Biased error, Constant modulus, Decision feedback

1. INTRODUCTION

The Gaussian noise model has been widely accepted in most of

the studies on the effects of noise on the performance of

optimization strategies, but when considering dc offset or biased

noise (dc noise), some significant differences arise [1]. In

electroencephalogram (EEG) recording systems, high electrode

impedances between recording electrodes and living skin tissue

can increase the low-frequency noise impacted by electrode

impedance. This slowly varying dc noise will cause enormous

variance in the measurement of effective refractory period (ERP)

if it’s not cancelled [2]. In addition, dc noise is also a problem in

endoscopy using optical fibers. The amount of light that the CCD

sensor of an endoscope receives may vary greatly depending on

the position of the distal end of the endoscope. This variation in

the amount of light may appear as varying dc noise and affect the

displayed image [3]. 

In recent capsule endoscopy systems, an on-line wireless link to

the computer is designed for early diagnosis and facilitating

patient's movement. However, in the indoor environments, the

wireless link is susceptible to noise from other wireless devices

and multipath fading that causes inter-symbol interference (ISI) in

the received signal. Moreover, in an indoor wireless link,

impulsive noise from various indoor electronic devices with

electromechanical switches is present [4,5]. The impulsive and

slowly varying dc noises can be considered crucial in bio-sensing

or medical diagnosis systems, resulting in transmission errors that

are unacceptable in communication systems dealing with medical

information, these noise must be cancelled [6]. 

Optical fiber communications are used in medical imaging,

remote bio-sensing, plumbing inspections, sewer lines and in

Internet signals. In optical communications, high-speed data

transfer is often limited by signal distortion, which is mainly

caused by broadening of pulses that results n ISI. To cope with

ISI, adaptive algorithms based on the mean squared error (MSE)

criterion have been widely chosen [7,8]. Unsupervised

equalization algorithms operate without the need for training data

for starting or restarting after a communications breakdown and

most blind equalization algorithms utilize the nonlinearity of the

equalizer output for updating weights. As one of the well-known

blind algorithms based on the MSE criterion, the constant

modulus algorithm (CMA) minimizes the average power of the

constant modulus error (CME) between the instant output power
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and source constant modulus [9]. One of the drawbacks of this

algorithm is that its performance is not satisfactory because of the

limits of the MSE criterion.

Unlike the MSE criterion that uses squared error, information

theoretic learning (ITL) methods are based on a combination of a

nonparametric probability density function (PDF) estimator and

the concept of information potential (IP) [10]. As one of the ITL

methods, the minimum error entropy (MEE) criterion has shown

superior performance when compared with the MSE criterion in

supervised channel equalization applications [11]. Another ITL

criterion, the Euclidian distance (ED) between two PDFs that

contains only quadratic terms to utilize the tools of information

potential has been successfully applied to biomedical

classification problems [12]. 

All these criteria are in Gaussian noise environments. Recently,

to cope with impulsive noise, an autocorrelation function of

kernel-transformed random processes called, correntropy has been

proposed for correlative signaling systems [13]. However, the

correntropy blind algorithm does not yield acceptable

performance in independent identically distributed signaling

methods that most communication systems employ and in dc bias

noise environments. 

For optical communication systems contaminated with dc

noise, a blind signal processing criterion based on the CME and

IP has been introduced in [14]. The criterion utilizes the ED

between the biased PDF of CMEs and the Dirac-delta function

located at zero on the CME axis. 

In this study, we investigate whether the method in [14], which

was originally designed for canceling dc noise and ISI, is robust to

impulsive noise as well. Because impulsive noise produces bursts of

incorrect decisions that can cause significant error propagation in

decision feedback equalizer (DFE), DFE structures can be

employed for residual ISI cancellation. On the bases of an analysis

of the ED between the biased PDF of CMEs and the Dirac-delta

function, we propose the DFE version of the method that is not only

robust to impulsive and dc noises but also capable of effectively

canceling overall ISI from multipath or optical-fiber dispersion.

2. METHODS

2.1 Equalizer cost functions for cancelling noise
and ISI

Generally, ISI exists in all optical communication systems,

and equalizers are ideal devices to compensate for ISI from

dispersion along with numerous other distortion effects [15]. A

general tapped delay-line (TDL) equalizer where tap weights are

adjusted by some adaptive algorithms mostly based on the MSE

criterion, is commonly used. The adaptive equalizer will then

handle time-varying dispersion and other linear slow varying

distortion effects. However, blind equalizers that do not require

training sequences for calculating output error can utilize the

CME instead.

The CME at time k  is defined as the difference between

the instant power of output  and the constant modulus , i,e,

, where  is determined

on the basis of the transmitted symbol points  [16]. The MSE

criterion for blind algorithms based on the CME is 

(1)

With biased dc noise adaptive systems may produce shifted

error. In this case, the biased error PDF in (3) can be moved along

the axis by controlling the variable . In order to move this PDF

toward the origin, an optimization criterion has been proposed in

[14], in which the ED between the biased PDF of CME

 and the Dirac-delta function  located at zero on

the CME axis is minimized.

(2)

Using the kernel density estimation method in [17] with a block of

CME samples  and the

zero-mean Gaussian kernel ,

the PDF of the CME  can be given by 

(3)

By employing a bias variable , the cost function to be

minimized can be given as 

(4)

For convenience, this cost function (4) as proposed in [14], will

be referred to as minimum ED for biased CME (MED-BCME) in

this paper. 

2.2 Proposed decision feedback method

In an environment with strong noise, most blind learning
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methods frequently produce incorrect decisions that can cause

error propagation when a decision feedback structure is employed

[16]. The DFE comprises a feed-forward filter for the input signal

and a feedback filter for decided symbols , and the DFE output

is

(5)

The feed-forward filter consists of a feed-forward weight

vector  and input vector 

. The feedback weight vector is

 and the feedback filter receives a

sequence of decisions on previously decided symbols and a

constant c as . This feedback filter

section is used to remove residual ISI. 

In the cost function (4) composed of two Gaussian kernels, the

kernel  is an exponential decay function of the

distance between two error locations so that the excessively long

distance between two error samples,  induced by

impulsive noise becomes a negligibly small value. Moreover, the

Gaussian kernel  plays two roles in the

minimization of the cost function. One is that with an

appropriately adjusted value of , the shifted error samples

induced by biased dc noise can be relocated to be centered at

zero. The other is that the kernel causes the cost function to be

insensitive to large error samples. This immunity to dc and

impulsive noises allows the system to prevent incorrect

decisions and error propagation problems when decision

feedback structures are employed.

When we define , the output (5)

can be rewritten as 

(6)

Then the CME becomes 

(7)

Substituting (7) into the cost function (4), we have 

(8)

When the cost function (8) is minimized, the second term

 is maximized so that 

approaches the constant  . Namely, the variable  can be

controlled to cancel the bias of the error PDF with the aid of

. Further, large argument values due to impulsive noise are

discarded with the exponentially decaying characteristics of

Gaussian kernel. This analysis indicates that, in an appropriate

filter structure, the cost function (8) has immunity to impulsive

and dc noises as well as the ability to cancel ISI. 

By minimizing the cost function Cost with respect to the filter

weights using the gradient descent method, the forward and

backward filter weights can be recursively adjusted. The forward

section gradient is evaluated as 

(9)

Similarly, the backward section gradient becomes 

 (10)

where  and .

Using the gradients (9) and (10), the weight vectors for the

feed-forward and feedback sections are updated with a step size  
as follows; 

(11)

(12)

In this paper, the proposed DF algorithm will be referred t o as

decision feedback MED-BCME (DF-MED-BCME). 

3. RESULTS AND DISCUSSION

For this simulation, an impulse response of the optical fiber

channel is chosen from the results in [18] as discussed below.

This channel model includes a transmitter impulse response,

wired or wireless channel impulse response, and receiver

matched-filter impulse response [19]. 

d̂i

yi Xi
TWi

F D
ˆ

i 1–
T

Wi
B+=

Wi
F wi 0

F wi 1
F wi 2

F  wi P 1–
F    T

= Xi =

xi xi 1–  xi P– 1+   T= Wi
B =

wi 0
B wi 1

B wi 2
B  wi Q 1–

B    T
=

D
ˆ

i 1– di 1– di 2–  di Q– 2– c    T=

G eCME i + 

eCME i eCME j–

G eCME i + 



yi
R wi p

F xi p– wi q
B d̂i q– 1–

q 0=

Q 1–

∑+
p 0=

P 1–

∑=

yi yi
R wi Q

B c+=

eCME i yi
R

wi Q
B c+

2
R2–=

Cost
1

N2
----- G 2

yi
2 yj

2– 
j k N– 1+=

k

∑
i k N– 1+=

k

∑=

2
N
---- G yi

R w
i Q

C

B+ R2 – – 
i k N– 1+=

k

∑–

2
N
---- G yi

R w
i· Q

C

B+
2

R2 – – 
i k N– 1+=

k

∑ yi
R wi Q

B c+
2

R2 –

wi Q
B c

Cost

WF
-------------- 1

22N2
--------------=

G 2 yi
2 yj

2–  yj
2 yi

2–  yiXi
 * yjXj

 *– 
j k N– 1+=

k

∑
i k N– 1+=

k

∑

 
1

2N
--------- G yi

2 R2 – –  yi
2 R2 – – yiXi

 *

i k N– 1+=

k

∑+

Cost

WB
-------------- 1

22N2
--------------=

G yi
2 yj

2–  yj
2 yi

2–  yiD
ˆ

i 1–
 *

yjD
ˆ

j 1–
 *

– 
j k N– 1+=

k

∑
i k N– 1+=

k

∑

 
1

2N
--------- G yi

2 R2 – –  yi
2 R2 – – yiD

ˆ
i 1–
 *

i k N– 1+=

k

∑+

N P N Q

Wk 1+
F Wk

F Cost

WF
--------------–=

Wk 1+
B Wk

B Cost

WB
--------------–=

I 3 I



Namyong Kim and Hyung-Gi Byun

J. Sensor Sci. & Tech. Vol. 23, No. 1, 2014 4

(13)

A binary symbol  is transmitted through the

channel (13), and then impulsive and dc biased noises are added.

The zero-mean white impulsive noise to be added to the channel

output is generated according to the work [13] with the sum of the

variance in the impulse and background noise being 50 and the

impulse incident rate 0.002. The variance in the background white

noise is set to be 0.001. Static dc noise can be removed by simple

analog or digital filters, so in this simulation, a dc noise that varies

slowly with time is added from sample number 5000 as shown in

Fig. 1. 

The numbers of feed-forward and feedback filter weights are

 and , respectively. The linear algorithms have a

corresponding number of 15 weights. The constant modulus

 because the transmitted symbol is . We

test the CMA, correntropy [13], their DF versions (DF-CMA and

DF-correntropy), MED-BCME, and DF-MED-BCME algorithms

by comparing their MSE convergence performance. The step-size

of the CMA is 0.000005 and the data-block size N is 30. The step

size and kernel size of correntropy are 0.002 and 4.2, respectively.

The step size, constant c, and kernel size of both MED-BCME

and DF-MED-BCME are set to be 0.02, 2.0 and 2.0, respectively.

These parameters are selected to have the lowest steady-state

MSE for each algorithm.

In the case of slowly varying dc noise along with impulsive

noise, steady state MSE of MED-BCME and DF- MED-BCME

show no sensitivity to the influx of slowly varying dc noise as

shown in Fig. 2. The conventional CMA and correntropy

converge slowly under non-Gaussian noise and ISI from the fiber

optic systems. From the sample time as the dc noise increases

gradually increase, the MSE curves of the CMA and DF-CMA

increase and converge at -2 dB for the CMA and -3 dB for the

DF-CMA. Correntropy appears stays at about -6 dB for linear and

-8 dB for DF-correntropy. On the other hand, the MED-BCME

type algorithms reach -14 dB for the MED-BCME and -24 dB for

the DF-MED-BCME. This result indicates that the DF version of

MED-BCME is significantly effective in cancelling the overall ISI

from fiber optic systems owing to the robustness of the MED-

BCME to impulsive and dc noises and its error propagation

blocking capabilities.

For a rigorous performance evaluation in digital signal

transmission, the average symbol error rate (SER) is commonly

used. However, as can be seen in Fig. 3 (for an output signal with

impulsive noise) and Fig. 4 (for a time region afflicted by impulse

noise for a closer inspection) after convergence, symbol errors are

mainly caused by the high voltage of impulses, which are

generated randomly at an occurrence rate specified in the

simulation. Therefore, Fig. 5 shows that after convergence, the

output samples of the proposed equalizer have no symbol errors in

the time regions having no impulsive noise. The value of -25 dB

steady state MSE under the given background white-noise

variance (0.001) indicates that in the case without impulsive noise

the SER can be almost zero as observed in Fig. 5. Moreover, the

proposed algorithm is not perturbed by the strong impulses and

shows showing correctly recovered estimation immediately after

the impulses shown in Fig. 4. In addition, the dc biased noise is

completely cancelled by the proposed algorithm in shown as Figs.

4 and 5. 
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Fig. 1. Example of overall noise with impulsive and slowly varying
dc noise. 

Fig. 2. MSE convergence performance under ISI and non-Gaussian
noise. (Note that gradually increasing dc noise is added to the
impulsive noise from sample number 5000).
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4. CONCLUSION

From EEGs to endoscopes, many medical devices suffer from

dc noise that prevents a doctor from making a correct diagnosis.

In recent wireless capsule endoscopy systems, multipath fading

occurs through various tissues or organs and wireless links in

indoor environments. This multipath fading induces ISI in the

received signal, and in indoor wireless links, impulsive noise

occurs from various indoor electronic devices. These ISI and non-

Gaussian noise are also found in optical fiber communication

systems that can be used in remote medical diagnosis and

operations. In this paper, the robustness of the blind equalization

method based on the biased PDF of CMEs to impulsive noise to

effectively cope with ISI under dc and impulsive noise is

investigated. Based on the analysis, a DF version of the method is

proposed because the non-Gaussian noise can cause severe error

propagation in DF approach. In the simulation for the impulse

response of optical fiber channels with two scenarios of dc noise

and impulsive noises, the proposed method yielded an MSE

enhancement of approximately 10 dB over the linear method.

From the results, we can conclude that the proposed method can

be an effective candidate for blind signal processing applications

from indoor medical devices in dc and impulsive noise

environments to optical fiber communication systems.
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