• Title/Summary/Keyword: Interface & Bulk Trap

Search Result 24, Processing Time 0.025 seconds

Measurements of the Thermally Stimulated Currents for Investigation of the Trap Characteristics in MONOS Structures (MONOS 구조의 트랩특성 조사를 위한 열자극전류 측정)

  • 이상배;김주연;김선주;이성배;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.58-62
    • /
    • 1995
  • Thermally stimulated currents have been measured to investigate the trap characteristics of the MONOS structures with the tunneling oxide layer of 27${\AA}$ thick nitride layer of 73${\AA}$ thick and blocking oxide layer of 40${\AA}$ thick. By changing the write-in voltage and the write-in temperature, peaks of the I-T characteristic curve due to the nitride bulk traps and the blocking oxide-nitride interface traps ware separated from each other experimentally. The results indicate that the nitride bulk traps are distributed spatially at a single energy level and the blocking oxide-nitride interface traps are distributed energetically at interface.

  • PDF

Determination of Memory Trap Distribution in Charge Trap Type SONOSFET NVSM Cells Using Single Junction Charge Pumping Method (Single Junction Charge Pumping 방법을 이용한 전하 트랩 형 SONOSFET NVSM 셀의 기억 트랩 분포 결정)

  • 양전우;흥순혁;박희정;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.453-456
    • /
    • 1999
  • The Si-SiO$_2$interface trap and nitride bulk trap distribution of SONOSFET(polysilicon-oxide-nitride-oxide-semiconductor)NVSM(nonvolatile semiconductor memory) cell were investigated by single charge pumping method. The used device was fabricated by 0.35 7m standard logic fabrication including the ONO cell process. This ONO dielectric thickness is tunnel oxide 24 $\AA$, nitride 74 $\AA$, blocking oxide 25 $\AA$, respectively. Keeping the pulse base level in accumulation and pulsing the surface into inversion with increasing amplitudes, the charge pumping current flow from the single junction. Using the obtained I$_{cp}$-V$_{h}$ curve, the local V$_{t}$ distribution, doping concentration, lateral interface trap distribution and lateral memory trap distribution were extracted. The maximum N$_{it}$($\chi$) of 1.62$\times$10$^{19}$ /cm$^2$were determined.mined.d.

  • PDF

Trap-related Electrical Properties of GaN MOSFETs Through TCAD Simulation

  • Doh, Seung-Hyun;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.150-155
    • /
    • 2018
  • Three different structures of GaN MOSFETs with trap distributions, trap levels, and densities were simulated, and its results were analyzed. Two of them are Schottky barrier MOSFETs(SB-MOSFETs): one with a p-type GaN body while the other is in the accumulation mode MOSFET with an undoped GaN body and regrown source/drain. The trap levels, distributions and densities were considered based on the measured or calculated properties. For the SB-MOSFET, the interface trap distribution affected the threshold voltage significantly, but had a relatively small influence on the subthreshold swing, while the bulk trap distribution affects the subthreshold swing more.

Analysis of Trap Dependence on Charge Trapping Layer Thickness in SONOS Flash Memory Devices Based on Charge Retention Model (전하보유모델에 기초한 SONOS 플래시 메모리의 전하 저장층 두께에 따른 트랩 분석)

  • Song, Yu-min;Jeong, Junkyo;Sung, Jaeyoung;Lee, Ga-won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.134-137
    • /
    • 2019
  • In this paper, the data retention characteristics were analyzed to find out the thickness effect on the trap energy distribution of silicon nitride in the silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices. The nitride films were prepared by low pressure chemical vapor deposition (LPCVD). The flat band voltage shift in the programmed device was measured at the elevated temperatures to observe the thermal excitation of electrons from the nitride traps in the retention mode. The trap energy distribution was extracted using the charge decay rates and the experimental results show that the portion of the shallow interface trap in the total nitride trap amount including interface and bulk trap increases as the nitride thickness decreases.

Degradation of Ultra-thin SiO2 film Incorporated with Hydrogen or Deuterium Bonds during Electrical Stress (수소 및 중수소가 포함된 실리콘 산화막의 전기적 스트레스에 의한 열화특성)

  • Lee, Jae-sung;Back, Jong-mu;Jung, Young-chul;Do, Seung-woo;Lee, Yong-hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.996-1000
    • /
    • 2005
  • Experimental results are presented for the degradation of 3 nm-thick gate oxide $(SiO_2)$ under both Negative-bias Temperature Instability (NBTI) and Hot-carrier-induced (HCI) stresses using P and NMOSFETS, The devices are annealed with hydrogen or deuterium gas at high-pressure $(1\~5\;atm.)$ to introduce higher concentration in the gate oxide. Both interface trap and oxide bulk trap are found to dominate the reliability of gate oxide during electrical stress. The degradation mechanism depends on the condition of electrical stress that could change the location of damage area in the gate oxide. It was found the trap generation in the gate oxide film is mainly related to the breakage of Si-H bonds in the interface or the bulk area. We suggest that deuterium bonds in $SiO_2$ film are effective in suppressing the generation of traps related to the energetic hot carriers.

Analysis Trap and Device Characteristic of Silicon-Al2O3-Nitride-Oxide-Silicon Memory Cell Transistors using Charge Pumping Method (Charge Pumping Method를 이용한 Silicon-Al2O3-Nitride-Oxide-Silicon Flash Memory Cell Transistor의 트랩과 소자)

  • Park, Sung-Soo;Choi, Won-Ho;Han, In-Shik;Na, Min-Gi;Lee, Ga-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.37-43
    • /
    • 2008
  • In this paper, the dependence of electrical characteristics of Silicon-$Al_2O_3$-Nitride-Oxide-Silicon (SANOS) memory cell transistors and program/erase (P/E) speed, reliability of memory device on interface trap between Si substrate and tunneling oxide and bulk trap in nitride layer were investigated using charge pumping method which has advantage of simple and versatile technique. We analyzed different SANOS memory devices that were fabricated by the identical processing in a single lot except the deposition method of the charge trapping layer, nitride. In the case of P/E speed, it was shown that P/E speed is slower in the SANOS cell transistors with larger capture cross section and interface trap density by charge blocking effect, which is confirmed by simulation results. However, the data retention characteristics show much less dependence on interface trap. The data retention was deteriorated as increasing P/E cycling number but not coincides with interface trap increasing tendency. This result once again confirmed that interface trap independence on data retention. And the result on different program method shows that HCI program method more degraded by locally trapping. So, we know as a result of experiment that analysis the SANOS Flash memory characteristic using charge pumping method reflect the device performance related to interface and bulk trap.

Determination of Memory Trap Distribution in Charge Trap Type SONOSFET NVSM Cells Using Single Junction Charge Pumping Method (Single Junction Charge Pumping 방법을 이용한 전하 트랩형 SONOSFET NVSM 셀의 기억 트랩분포 결정)

  • 양전우;홍순혁;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.822-827
    • /
    • 2000
  • The Si-SiO$_2$interface trap and nitride bulk trap distribution of SONOSFET(polysilicon-oxide-nitride-oxide-semiconductor field effect transistor) NVSM (nonvolatile semiconductor memory) cell is investigated by single junction charge pumping method. The device was fabricated by 0.35㎛ standard logic fabrication process including the ONO stack dielectrics. The thickness of ONO dielectricis are 24$\AA$ for tunnel oxide, 74 $\AA$ for nitride and 25 $\AA$ for blocking oxide, respectively. By the use of single junction charge pumping method, the lateral profiles of both interface and memory traps can be calculated directly from experimental charge pumping results without complex numerical simulation. The interface traps were almost uniformly distributed over the whole channel region and its maximum value was 7.97$\times$10$\^$10/㎠. The memory traps were uniformly distributed in the nitride layer and its maximum value was 1.04$\times$10$\^$19/㎤. The degradation characteristics of SONOSFET with write/erase cycling also were investigated.

  • PDF

Evaluation of Grain Boundary Property in Oxide Ceramics by Isothermal Capacitance Trasient Spectroscopy (ICTS법을 이용한 산화물 세라믹스에서의 입계물성평가)

  • 김명철;한응학;강영석;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.529-537
    • /
    • 1994
  • The principle of the Isothermal Capacitance Transient Spectroscopy[ICTS] were explained to measure the electronic trap levels in oxide ceramics. The measurement apparatus and the theory of the ICTS were described in detail. The trap energy evaluation was performed for the ZnO varistor and BaTiO3 ceramics. The grain boundary interface trap levels were detected at -5$0^{\circ}C$~6$0^{\circ}C$ in the case of ZnO varistor and PTCR samples, and the bulk trap levels were detected at 2$0^{\circ}C$~60~ in BaTiO3. The trap energy levels of the above samples could be directly determined by ICTS measurement.

  • PDF

Amorphous Indium Gallium Zinc Oxide를 활성층으로 사용한 MIS소자에서의 Bulk와 Interface에서의 Traps 분석

  • Kim, Tae-Uk;Gu, Jong-Hyeon;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.95-95
    • /
    • 2011
  • 비정질 산화물 반도체(Amorphous oxide semiconductors: AOSs)는 대면적화에도 불구하고 높은 이동도를 가지고, 상온에서도 제작할 수 있고, 투명 플렉시블 디스플레이 소자에 사용할 수 있기 때문에 최근 들어 각광받고 있는 연구 분야이다. 본 연구에서는 스퍼터링을 이용하여 활성층을 Amorphous indium gallium zinc oxide(a-IGZO)로 증착할 시에 스퍼터의 파워와 챔버내의 Ar/O2 비율을 다르게 했을 때 소자에 미치는 영향을 MIS구조를 이용하여 분석했다. 또한 같은 조건의 a-IGZO 활성층을 사용한 박막트랜지스터(TFT) 소자의 절연막의 종류를 바꿔가며 제작했을때의 소자의 특성 변화에 대해서도 분석하였다. 먼저 60 nm 두께의 a-IGZO층을 Heavily doped된 N형 실리콘 기판위에 스퍼터링 파워와 가스 분압비를 달리하여 증착하였다. 그 후 30 nm두께의 SiO2, Al2O3, SiNx 절연막을 증착하고, 마지막으로 열 증발 증착장비(Thermal Evaporator)를 이용하여 Al 전극을 150nm 증착하였다. 소자의 전기적 특성 분석은 HP4145와 Boonton 720을 사용하여 I-V와 C-V를 측정하였다. 위의 실험으로부터 스퍼터에서의 증착 rf파워가 증가할수록 a-IGZO 박막 트랜지스터에서의 캐리어 이동도가 감소하는 것을 볼 수 있었고, 챔버내의 가스분압비와 소자의 절연막의 종류가 변하면 a-IGZO 박막 트랜지스터의 전기적 특성이 변하는 것을 볼 수 있었다. 이러한 캐리어 이동도의 감소와 전기적 특성의 변화의 이유는 a-IGZO 활성층의 bulk trap과 절연막, 활성층 사이의 interface trap에 의한 것으로 보여진다.

  • PDF

Trap Generation during SILC and Soft Breakdown Phenomena in n-MOSFET having Thin Gate Oxide Film (박막 게이트 산화막을 갖는 n-MOSFET에서 SILC 및 Soft Breakdown 열화동안 나타나는 결함 생성)

  • 이재성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.1-8
    • /
    • 2004
  • Experimental results are presented for gate oxide degradation, such as SILC and soft breakdown, and its effect on device parameters under negative and positive bias stress conditions using n-MOSFET's with 3 nm gate oxide. The degradation mechanisms are highly dependent on stress conditions. For negative gate voltage, both interface and oxide bulk traps are found to dominate the reliability of gate oxide. However, for positive gate voltage, the degradation becomes dominated mainly by interface trap. It was also found the trap generation in the gate oxide film is related to the breakage of Si-H bonds through the deuterium anneal and additional hydrogen anneal experiments. Statistical parameter variations as well as the “OFF” leakage current depend on both electron- and hole-trapping. Our results therefore show that Si or O bond breakage by tunneling electron and hole can be another origin of the investigated gate oxide degradation. This plausible physical explanation is based on both Anode-Hole Injection and Hydrogen-Released model.