• Title/Summary/Keyword: Interband transition

Search Result 7, Processing Time 0.023 seconds

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

Interband optical properties in wide band gap group-III nitride quantum dots

  • Bala, K. Jaya;Peter, A. John
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.13-27
    • /
    • 2015
  • Size dependent emission properties and the interband optical transition energies in group-III nitride based quantum dots are investigated taking into account the geometrical confinement. Exciton binding energy and the optical transition energy in $Ga_{0.9}In_{0.1}N$/GaN and $Al_{0.395}In_{0.605}N$/AlN quantum dots are studied. The largest intersubband transition energies of electron and heavy hole with the consideration of geometrical confinement are brought out. The interband optical transition energies in the quantum dots are studied. The exciton oscillator strength as a function of dot radius in the quantum dots is computed. The interband optical absorption coefficients in GaInN/GaN and AlInN/AlN quantum dots, for the constant radius, are investigated. The result shows that the largest intersubband energy of 41% (10%) enhancement has been observed when the size of the dot radius is reduced from $50{\AA}$ to $25{\AA}$ of $Ga_{0.9}In_{0.1}N$/GaN ($Al_{0.395}In_{0.605}N$/AlN) quantum dot.

Interband Transition and Confinement of Charge Carriers in CdS and CdS/CdSe Quantum Dots

  • Man, Minh Tan;Lee, Hong Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.167-171
    • /
    • 2015
  • Quantum-confined nanostructures open up additional perspectives in engineering materials with different electronic and optical properties. We have fabricated unique cation-exchanged CdS and CdS/CdSe quantum dots and measured their first four exciton transitions. We demonstrate that the relationship between electronic transitions and charge-carrier distributions is generalized for a broad range of core-shell nanostructures. These nanostructures can be used to further improve the performance in the fields of bio-imaging, light-emitting devices, photovoltaics, and quantum computing.

MAGNETO-OPTICAL KERR SPECTRA FOR AMORPHOUS RE-Co ALLOY FILMS (비정질 RE-Co 합금막의 자기광학 스펙트럼)

  • Y. J. Choe;S. Tsunashima;S. Uchiyama
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.154-159
    • /
    • 1994
  • The magneto-optical Kerr spectra(${\lambda}=250~700nm$) of amorphous RE-Co(RE=Ce, Nd, Pr, Gd, Tb, Er, Ho) are compared with those of Y-Co films. It has been found that the Kerr rotation of RE-Co is mainly due to Co in the long wavelength region, whereas at short wavelength Ce, Pr, Nd, and Gd contribute positively, and Tb, Ho, and Er contribute negatively to the Kerr rotation of RE-Co amorphous films. In the interesting energy region(1.5~5.0 eV), the magneto-optical contribution of Pr and Nd are thought to be related with $4f{\uparrow}->5d{\uparrow}$ interband transition, and the contribution of Ce and Gd might be concerned with d->p interband transition. The magneto-optical effect of Tb in the short wavelength region might be related with $4f{\downarrow}->5d{\downarrow}$ and/or $5d{\downarrow}->4f{\downarrow}$, and that of Ho and Er can be explained by $4f{\downarrow}->5d{\downarrow}$ magneto-optical interband transition.

  • PDF

OBSERV ATION OF MICRO-STRUCTURE AND OPTICAL PROPERTISE OF TITANIUM DIOXIDE THIN FILMS USING OPTICAL MMEHODS

  • Kim, S.Y.;Kim, H.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.788-796
    • /
    • 1996
  • $TiO_2$ films prepared by RF magnetron sputtering, electron beam evaporation, ion assisted deposition (IAD) and sol-gel method are prepared on c-Si substrate and vitreous silica substrate respectively. From the transmission spectra of $TiO_2$ films on vitreous silica substrate in the spectral region from 190 nm to 900 nm, k($\lambda$) of $TiO_2$ is obtained. Using k($\lambda$) in the interband transition region the coefficients of the quantum mechanical dispersion relation of an amorphous $TiO_2$ and hence n($\lambda$) including the optically opaque region of above fundamental transition energy are obtained. The spectroscopic ellipsometry spectra of $TiO_2$ films in the spectral region of 1.5-5.0eV are model analyzed to get the film packing density variation versus i) substrate material, ii) film thickness and iii) film growth technique. The complex refractive index change of these $TiO_2$ films versus water condensation is also studied. Film micro-structures by SE modelling results are compared with those by atomic force microscopy images and X-ray diffraction data.

  • PDF

Diamagnetic Shift of a InGaP-AlInGaP Semiconductor Single Quantum Well under Pulsed-magnetic Fields

  • Choi, B.K.;Kim, Yongmin;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.156-161
    • /
    • 2015
  • Application of magnetic fields is important to characterize the carrier dynamics in semiconductor quantum structures. We performed photoluminescence (PL) measurements from an InGaP-AlInGaP single quantum well under pulsed magnetic fields to 50 T. The zero field interband PL transition energy matches well with the self-consistent Poisson-$Schr{\ddot{o}}dinger$ equation. We attempted to analyze the dimensionality of the quantum well by using the diamagnetic shift of the magnetoexciton. The real quantum well has finite thickness that causes the quasi-two-dimensional behavior of the exciton diamagnetic shift. The PL intensity diminishes with increasing magnetic field because of the exciton motion in the presence of magnetic field.

Optical Transitions of a InGaP-AlInGaP Semiconductor Single Quantum Well in Magnetic Fields

  • Kim, Yong-Min;Sin, Yong-Ho;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.332.1-332.1
    • /
    • 2016
  • Application of magnetic fields is important to characterize the carrier dynamics in semiconductor quantum structures. We performed photoluminescence (PL) measurements from an InGaP-AlInGaP single quantum well under pulsed magnetic fields to 50 T. The zero field interband PL transition energy matches well with the self-consistent Poisson-Schr?dinger equation. We attempted to analyze the dimensionality of the quantum well by using the diamagnetic shift of the magnetoexciton. The real quantum well has finite thickness that causes the quasi-two-dimensional behavior of the exciton diamagnetic shift. The PL intensity diminishes with increasing magnetic field because of the exciton motion in the presence of magnetic field.

  • PDF