DOI QR코드

DOI QR Code

Interband optical properties in wide band gap group-III nitride quantum dots

  • Bala, K. Jaya (Department of Physics, GTN Arts College) ;
  • Peter, A. John (P.G & Research Department of Physics, Government Arts College)
  • Received : 2014.11.04
  • Accepted : 2015.03.26
  • Published : 2015.03.25

Abstract

Size dependent emission properties and the interband optical transition energies in group-III nitride based quantum dots are investigated taking into account the geometrical confinement. Exciton binding energy and the optical transition energy in $Ga_{0.9}In_{0.1}N$/GaN and $Al_{0.395}In_{0.605}N$/AlN quantum dots are studied. The largest intersubband transition energies of electron and heavy hole with the consideration of geometrical confinement are brought out. The interband optical transition energies in the quantum dots are studied. The exciton oscillator strength as a function of dot radius in the quantum dots is computed. The interband optical absorption coefficients in GaInN/GaN and AlInN/AlN quantum dots, for the constant radius, are investigated. The result shows that the largest intersubband energy of 41% (10%) enhancement has been observed when the size of the dot radius is reduced from $50{\AA}$ to $25{\AA}$ of $Ga_{0.9}In_{0.1}N$/GaN ($Al_{0.395}In_{0.605}N$/AlN) quantum dot.

Keywords

References

  1. Abbas, H. and Player, M. (2014), "Optical and electrical properties of undoped GaN films on sapphire substrate grown by metalorganic chemical vapor deposition", Nat. Sci., 12(5), 80.
  2. Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, W.J. and Eastman, L.F. (2002), "Optical detection of 2DEG in GaN/AlGaN structures - high magnetic field studies", J. Phys. Cond. Matt., 14(13), 3399. https://doi.org/10.1088/0953-8984/14/13/302
  3. Ambacher, O., Majewski, J., Miskys, C., Link, A., Herman, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B. and Eastman, L.F. (2001), "Intersubband optical transitions in nitride based group-III semiconductor quantum dots", J. Phys. Cond. Matt., 14, 3399.
  4. Barve, A.V., Meesala, S., Sengupta, S., Kim, J.O., Chakrabarti, S. and Krishna, S. (2012), "Investigation of non-uniform electric field in intersubband quantum infrared photodetectors", Appl. Phys. Lett., 100, 191107. https://doi.org/10.1063/1.4712601
  5. Bernardini, F., Fiorentini, V. and Vanderbilt, D. (1997), "Spontaneous polarization and piezoelectric constants of III-V nitrides", Phys. Rev. B, 56(16), 10024. https://doi.org/10.1103/PhysRevB.56.R10024
  6. Bhattacharya, P., Ghosh, S. and Stiff-Roberts, A.D. (2004), "Quantum dot optoelectronic devices", Annu. Rev. Mater. Res., 34, 1. https://doi.org/10.1146/annurev.matsci.34.040203.111535
  7. Bigenwald, P., Lefebvre, P., Bretagnon, T. and Gil, B. (1999), "Confined excitons in GaN$\pm$AlGaN quantum wells", Phys. Stat. Sol. B, 216, 371. https://doi.org/10.1002/(SICI)1521-3951(199911)216:1<371::AID-PSSB371>3.0.CO;2-S
  8. Bir, G.L. and Pikus, E. (1974), Symmetry and Strain-Induced Effects in Semiconductors, Wiley, New York.
  9. Baer, N., Schulz, S., Schumacher, S., Gartner, P., Czycholl, G. and Jahnke, F. (2005), "Optical properties of self-organized wurtziteInN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation", Appl. Phys. Lett, 87, 231114. https://doi.org/10.1063/1.2139621
  10. Castrucc, P. (2014), "Nanotube-silicon heterojunction solar cells", Adv. Nano Res., 2(1), 23. https://doi.org/10.12989/anr.2014.2.1.023
  11. Cao, J.C., Lei, X.L., Li, A.Z. and Liu, H.C. (2001), "Spectrum dynamics of negative-effective-mass oscillators under a THz radiation", Appl. Phys. Lett., 78,2524. https://doi.org/10.1063/1.1364661
  12. de Sousa, J.S., Leburton, J.P., Freire, V.N. and da Silva, E.F. (2005), "Intraband absorption and stark effect in silicon nanocrystals", Phys. Rev. B, 72, 155438. https://doi.org/10.1103/PhysRevB.72.155438
  13. Fonoberov, V.A. and Balandin, A.A. (2004), "Optical properties of wurtzite and zinc-blende GaN/AlN quantum dots", J. Vac. Sci. Technol. B, 22, 2190. https://doi.org/10.1116/1.1768188
  14. Fonoberov, V.A. and Balandin, A.A. (2004), "Radiative lifetime of excitons in ZnO nanocrystals: the dead-layer effect", Phys. Rev. B, 70, 195410. https://doi.org/10.1103/PhysRevB.70.195410
  15. Fonoberov, V.A. and Balandin, A.A. (2006), "ZnO quantum dots: properties andoptoelectronic applications", J. Nanoelectro. Optoelectro, 1, 19. https://doi.org/10.1166/jno.2006.002
  16. Fonoberov, V.A., Alim, K.A., Balandin, A.A., Xiu, F. and Liu, J. (2006), "Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals", Phys. Rev. B, 73,165317. https://doi.org/10.1103/PhysRevB.73.165317
  17. Haug, H. and Koch, S.W. (1994), Quantum Theory of the Optical Properties of Semiconductors, 3rd Edition, World Scientific, Singapore.
  18. Kohler, R.R. et al. (2002), "Terahertz semiconductor-heterostructure laser", Nature, 417, 156. https://doi.org/10.1038/417156a
  19. Koga, T., Nitta, J., Takayanagi, H. and Datta, S. (2002), "Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode", Phys. Rev. Lett., 88, 126601. https://doi.org/10.1103/PhysRevLett.88.126601
  20. Kuhn, K.J., Lyengar, G.U. and Yee, S. (1991), "Nonlinear photonics: nonlinearities in optics, optoelectronics and fiber communication", J. Appl. Phys., 70, 5010. https://doi.org/10.1063/1.349005
  21. Liu, H.C. (1999), "Quantum well infrared photodetector physics and novel devices, Intersubband Transitions in Quantum Wells Physics and Device Applications", Eds. Weber, E.R. and Willardson, R.K., Semiconductors and Semimetals, 62, Academic Press, San Diego.
  22. Liu, H.C. et al. (2003), "Coupled electron-phonon modes in optically pumped resonant intersubband lasers", Phys. Rev. Lett., 90, 077402. https://doi.org/10.1103/PhysRevLett.90.077402
  23. Malis, O., Edmunds, C., Manfra, M.J. and Sivco, D.L. (2009), "Near-infrared intersubband absorption in molecular-beam epitaxy-grown lattice-matched InAlN/GaN superlattices", Appl. Phys. Lett., 94, 16111.
  24. Matthews, D.R., Summers, H.D., Smowton, P.M. and Hopkinson, M. (2002), "Ultrafast electron capture into p-modulation-doped quantum dots", Appl. Phys. Lett., 81,4904. https://doi.org/10.1063/1.1532549
  25. Meighan, A., Rostami, A. and Abbasian, K. (2014), "Quantum computing using applied electric field to quantum dots", Adv. Nano Res., 2(1), 15. https://doi.org/10.12989/anr.2014.2.1.015
  26. Nevou, L., Tchemycheva, M., Julien, F.H., Guillot, F. and Monroy, E. (2007), "Nano-semiconductors: devices and technology", Appl. Phys. Lett., 90, 121106. https://doi.org/10.1063/1.2715001
  27. Nevou, L., Tchemycheva, M., Julien, F.H., Guillot, F., Monroy, E. and Sarigiannidou, E. (2008), "Intraband emission at lambda approximate to 1.48 $\mu{m}$ from GaN/AlN quantum dots at room temperature", Appl. Phys. Lett., 92, 161105. https://doi.org/10.1063/1.2913756
  28. Prete, P., Lovergine, N., Tapfer, L. and Mancini, A.M. (2001), "Structural properties of MOVPE-grown ZnMgSeepilayers and ZnSe/ZnMgSe MQWs on (100) GaAs", Opt. Mater., 17, 207. https://doi.org/10.1016/S0925-3467(01)00082-9
  29. Qu, F. and Morais, P.C. (2003), "The optical stark effect in semiconductor quantum wires", Phys. Lett. A, 310, 460. https://doi.org/10.1016/S0375-9601(03)00381-5
  30. Renard, J., Songmuang, R., Bougerol, C., Daudin, B. and Gayral, B. (2008), "Exciton and biexciton luminescence from single GaN/AlN quantum dots in nanowires", Nanolett, 8(7), 2092. https://doi.org/10.1021/nl0800873
  31. Shi, J.J. and Gan, Z.Z. (2003), "Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots", J. Appl. Phys., 94, 407 https://doi.org/10.1063/1.1576490
  32. Singh, J. (1996), Optical properties of excitons in strained Gax In1-xAs/GaAs quantum dot: ef fect of geometrical conf inement on exciton g-factor, An Introduction to Materials and Devices, Optoelectronics, Tata McGraw Hill, New Delhi.
  33. Sun, K. et al. (2009), "Applications of colloidal quantum dots", Microelectronics J., 40, 644. https://doi.org/10.1016/j.mejo.2008.06.033
  34. Sun, H.H., Guo, F.Y., Li, D.Y., Wang, L., Wang, D.B. and Zhao, L.C. (2012), "Intersubband absorption properties of high Al content AlxGa1-xN/GaN multiple quantum wells grown with different interlayers by metal organic chemical vapor deposition", Nanoscale Res. Lett., 7, 649. https://doi.org/10.1186/1556-276X-7-649
  35. Teleb, H., Abedi, K. and Golmohammadi, S. (2011), "Operation of quantum-dot semiconductor optical amplifiers under non-uniform current injection", Appl. Opt., 50, 608. https://doi.org/10.1364/AO.50.000608
  36. Tchelidze, T. and Kereselidze, T. (2004), "Exciton energies and probability of their radiative decay in GaN/AlN quantum structures", Opto-elect. Rev., 12(4), 441.
  37. Voskoboynikov, O., Bauga, O., Lee, C.P. and Tretyak, O. (2003), "Magnetic properties of parabolic quantum dots in the presence of the spin-orbit Interaction", J. Appl. Phys., 94, 5891. https://doi.org/10.1063/1.1614426
  38. Vurgaftman, I., Meyer, J.R. and Ram-ohan, L.R. (2001), "Band parameters for III-V compound semiconductors and their alloys", J. Appl. Phys., 89, 5815. https://doi.org/10.1063/1.1368156
  39. Wang, G., Duan, X. and Chen, W. (2013), "Application and performance of 3d printing in nanobiomaterials", Nanomat., Article ID 240563.

Cited by

  1. Differential optical gain in a GaInN/AlGaN quantum dot vol.38, pp.6, 2017, https://doi.org/10.1088/1674-4926/38/6/062001