DOI QR코드

DOI QR Code

Interband Transition and Confinement of Charge Carriers in CdS and CdS/CdSe Quantum Dots

  • Man, Minh Tan (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Lee, Hong Seok (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University)
  • Received : 2015.09.15
  • Accepted : 2015.09.24
  • Published : 2015.09.30

Abstract

Quantum-confined nanostructures open up additional perspectives in engineering materials with different electronic and optical properties. We have fabricated unique cation-exchanged CdS and CdS/CdSe quantum dots and measured their first four exciton transitions. We demonstrate that the relationship between electronic transitions and charge-carrier distributions is generalized for a broad range of core-shell nanostructures. These nanostructures can be used to further improve the performance in the fields of bio-imaging, light-emitting devices, photovoltaics, and quantum computing.

Keywords

References

  1. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science 307, 538 (2005). https://doi.org/10.1126/science.1104274
  2. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, Nat. Mater. 4, 435 (2005). https://doi.org/10.1038/nmat1390
  3. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano Lett. 1, 207 (2001). https://doi.org/10.1021/nl0155126
  4. R. Reiss, J. Bleuse, and A. Pron, Nano Lett. 2, 781 (2002). https://doi.org/10.1021/nl025596y
  5. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, Science 310, 462 (2005). https://doi.org/10.1126/science.1117908
  6. R. Xie, X. Zhong, and T. Basche, Adv. Mater. 17, 2741 (2005). https://doi.org/10.1002/adma.200501029
  7. M. T. Man and H. S. Lee, Sci. Rep. 5, 8267 (2015). https://doi.org/10.1038/srep08267
  8. G. Gourdon and P. Lavallard, Phys. Stat. Solidi. (b) 153, 641 (1989). https://doi.org/10.1002/pssb.2221530222
  9. V. I. Klimov and D. W. McBranch, Phys. Rev. Lett. 80, 4028 (1998). https://doi.org/10.1103/PhysRevLett.80.4028
  10. W. M. Yen, S. Shionoya, and H. Yamamoto (Eds.), Phosphor Handbook (CRC Press, Boca Raton, FL 1998).
  11. L. E. Brus, J. Phys. Chem. 90, 2555 (1986). https://doi.org/10.1021/j100403a003
  12. Al. L. Efros and M. Rosen, Phys. Rev. B 58, 7120 (1998). https://doi.org/10.1103/PhysRevB.58.7120
  13. A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and Al. L. Efros, J. Opt. Soc. Am. B 10, 100 (1993). https://doi.org/10.1364/JOSAB.10.000100
  14. L. Cademartiri, E. Montanaro, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, J. Am. Chem. Soc. 128, 10337 (2006). https://doi.org/10.1021/ja063166u
  15. L. Antonov and D. Nedeltcheva, Chem. Soc. Rev. 29, 217 (2000). https://doi.org/10.1039/a900007k
  16. V. I. Klimov, J. Phys. Chem. B 104, 6112 (2000). https://doi.org/10.1021/jp9944132
  17. S. V. Gaponenko, Nanoscale Linear and Nonlinear Optics, edited by M. Bertolotti, (American Institute of Physics, 2001), 157-177.