References
- Lee LP, Szema R: Inspirations from biological optics for advanced photonic systems. Science 310, 1148-1150 (2005). https://doi.org/10.1126/science.1115248
- Sun CH, Jiang P, Jiang B: Broadband moth-eye antireflection coatings on silicon. Appl Phys Lett 92, 22-25 (2008).
- Chen Q, Hubbard G, Shields PA, Liu C, Allsopp DWE, Wang WN, Abbott S: Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl Phys Lett 94, 58-61 (2009).
- Song YM, Jeong YK, Yeo CI, Lee YT: Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures. Opt Express 20, A916 (2012). https://doi.org/10.1364/OE.20.00A916
- Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L: The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19, 2213-2217 (2007). https://doi.org/10.1002/adma.200601946
- Song YM, Park GC, Kang EK, Yeo CI, Lee YT: Antireflective grassy surface on glass substrates with self-masked dry etching. Nanoscale Res Lett 8, 505 (2013). https://doi.org/10.1186/1556-276X-8-505
- Jeong KH, Kim JY, Lee LP: Biologically inspired artificial compound eyes. Science 312, 557-561 (2006). https://doi.org/10.1126/science.1123053
- Song YM, Xie Y, Malyarchuk V, Xiao J, Jung IH, Choi KJ, Liu ZJ, Park HS, Lu C, Kim RH, Li R, Crozier KB, Huang Y, Rogers JA: Digital cameras with designs inspired by the arthropod eye. Nature 497, 95-99 (2013). https://doi.org/10.1038/nature12083
- Mazumder P, Jiang Y, Baker D, Carrilero A, Tulli D, Infante D, Hunt AT, Pruneri V: Superomniphobic, Transparent, and Antire fl ection Surfaces Based on Hierarchical Nanostructures. Nano Lett 14, 4677-4681 (2014). https://doi.org/10.1021/nl501767j
- Kang EK, Kwon EH, Min JW, Song YM, Lee YT: Improved light extraction ef fi ciency of GaN-based vertical LEDs using hierarchical micro / subwavelength structures. Jpn J Appl Phys 54, 06FH02 (2015). https://doi.org/10.7567/JJAP.54.06FH02
- Kanamori Y, Ishimori M, Hane K: High efficient light-emitting diodes with antireflection subwavelength gratings. IEEE Photonics Technol Lett 14, 1064-1066 (2002). https://doi.org/10.1109/LPT.2002.1021970
- Hadobas K, Kirsch S, Carl A, Acet M, Wassermann EF: Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 11, 161-164 (2000). https://doi.org/10.1088/0957-4484/11/3/304
- Zhang J, Shen S, Dong XX, Chen LS: Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold. Opt Express 22, 1842-1851 (2014). https://doi.org/10.1364/OE.22.001842
- Muller CM, Mornaghini FCF, Spolenak, R: Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography. Nanotechnology 19, 485306 (2008). https://doi.org/10.1088/0957-4484/19/48/485306
- Min WL, Jiang P, Jiang B: Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures. Nanotechnology 19, 475604 (2008). https://doi.org/10.1088/0957-4484/19/47/475604
- Song YM, Choi ES, Park GC, Park CY, Jang SJ, Lee YT: Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency. Appl Phys Lett 97, 9-11 (2010).
- Stavenga DG, Foletti S, Palasantzas G, Arikawa K: Light on the moth-eye corneal nipple array of butterflies. Proc R Soc B 273, 661-667 (2006). https://doi.org/10.1098/rspb.2005.3369
- Greiner B, Ribi WA, Warrant EJ: Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res 316, 377-390 (2004). https://doi.org/10.1007/s00441-004-0883-9