DOI QR코드

DOI QR Code

Vanadium Oxide Microbolometer Using ZnO Sandwich Layer

  • Han, Myung-Soo (Medical Photonics Research Center, Korea Photonics Technology Institute) ;
  • Kim, Dae Hyeon (Medical Photonics Research Center, Korea Photonics Technology Institute) ;
  • Ko, Hang Ju (Medical Photonics Research Center, Korea Photonics Technology Institute) ;
  • Kim, Heetae (Rare Isotope Science Project, Institute for Basic Science)
  • Received : 2015.09.24
  • Accepted : 2015.09.30
  • Published : 2015.09.30

Abstract

Optical, electrical and structural properties of VOx/ZnO/VOx thin film are studied. The VOx/ZnO/VOx multilayer is deposited by using a radio frequency (RF) sputtering system. The VOx/ZnO/VOx thin film shows the high temperature coefficient of resistance (TCR) of $-3.12%/^{\circ}C$ and the low sheet resistance of about 80 $k{\Omega}/sq$ at room temperature. The responsivity and detectivity of the bolometer are measured as a function of modulation frequency.

Keywords

References

  1. S. J. Yu, S. J. Youn, H. Kim, Size effect of thermal radiation, Physica B. 405, 638 (2010). https://doi.org/10.1016/j.physb.2009.09.079
  2. H. Kim, S. J. Youn, S. J. Yu, Finite Size Effect of One-dimensional Thermal Radiation, J. Korean Phys. Soc. 56, 554 (2010). https://doi.org/10.3938/jkps.56.554
  3. H. Kim, S. C. Lim, Y. H. Lee, Size effect of two-dimensional thermal radiation, Phys. Letts. A. 375, 2661 (2011). https://doi.org/10.1016/j.physleta.2011.05.051
  4. H. Kim, M.S. Han, D. Perello and M. Yun, Effective temperature of thermal radiation from non-uniform temperature distributions and nano-particles, Infrared Physics & Technology 60, 7 (2013). https://doi.org/10.1016/j.infrared.2013.03.003
  5. H. Kim, C. S. Park, M.S. Han, Effective temperature of two dimensional material for non-uniform temperature distribution, Optics Communications 325, 68 (2014). https://doi.org/10.1016/j.optcom.2014.04.004
  6. H. Kim, W. K. Kim, G.T. Park, C.S. Park, H. D. Cho, Size effect of the effective temperature in one-dimensional material, Infrared Physics & Technology 67, 49 (2014). https://doi.org/10.1016/j.infrared.2014.07.007
  7. A. Tanaka, S. Matsumoto, N. Tsukamoto, S. Itoh, K. Chiba, T. Endoh, A . Nakazato, Infrared focal plane array incorporating silicon IC process compatible bolometer, IEEE Transactions on Electron Devices, 43, 1844 (1996). https://doi.org/10.1109/16.543017
  8. D. Manno, A. Serra, M. Di Giulio, G. Micocci, A. Taurino, A. Tepore, D. Berti, Structural and electrical properties of sputtered vanadium oxide thin films for applications as gas sensing material, J. Appl. Phys. 81, 2709 (1997). https://doi.org/10.1063/1.363973
  9. Y. Shimizu, K. Nagase, N. Miura, N. Yamazoe, New preparation process of V2O5 thin films based on spin coating from organic vanadium solution, Jpn. J. Appl. Phys. 29, 1708 (1990). https://doi.org/10.1143/JJAP.29.L1708
  10. Y. Zhao, Z. C. Feng, Y. Liang, H. W. Sheng, Laser-induced coloration of WO3, Appl. Phys. Lett. 71, 2227 (1997). https://doi.org/10.1063/1.120064
  11. D. Barreca, Vanadyl precursors used to modify the properties of vanadium oxide thin film obtained by chemical vapor deposition, J. Electrochem. Soc. 146, 551 (1999). https://doi.org/10.1149/1.1391642
  12. F.C. Case, Modifications in the phase transition properties of pre-deposited VO2 films, J. Vac. Sci. Technol. A 2, 1509 (1984). https://doi.org/10.1116/1.572462
  13. F.J. Morin, Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett., 3, 34 (1959). https://doi.org/10.1103/PhysRevLett.3.34
  14. V.N. Ovsyuk, Uncooled microbolometer IR FPA based on sol-gel VO, Proc. of SPIE, 5834, 47 (2005).
  15. H. G. Li, Preparation of VOx Films for Uncooled Infrared Detecors, Semi. Optoelectron. 22, 38 (2001).
  16. J. C. Yang, Vanadium Oxide-based Bolometric Infrared Spectrometer, Proc. of SPIE, 6759, 675905 (2007).
  17. M. Ghanashyam Krishna, Y. Debauge and A. K. Bhattacharya, X-ray photoelectron spectroscopy and spectral transmittance study of stoichiometry in sputtered vanadium oxide films, Thin Solid Films 312, 116 (1998). https://doi.org/10.1016/S0040-6090(97)00717-7
  18. P. Jin, M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, K. Macak, U. Helmersson, Epitaxial growth of W-doped VO2/V2O3 multilayer on ${\alpha}$-Al2O3(110) by reactive magnetron sputtering, Thin Solid Films 375, 128 (2000). https://doi.org/10.1016/S0040-6090(00)01226-8
  19. A. Shimizu, M. Kanbara, M. Hada, M. Kasuga, ZnO Green Light Emitting Diode, Jpn. J. Appl. Phys., Part 1 17, 1435 (1978). https://doi.org/10.1143/JJAP.17.1435
  20. C. Klingshirn, The Luminescence of ZnO under High One- and Two-Quantum Excitation, Phys. Status Solidi B 71, 547 (1975). https://doi.org/10.1002/pssb.2220710216
  21. S. Cho, H. Kim, Effects of Rapid Thermal Annealing on the Photoluminescent Properties of ZnO Thin Films, Journal of the Korean Physical Society 53, 1987 (2008). https://doi.org/10.3938/jkps.53.1987
  22. S. Cho, H. Kim, Effect of deposition temperature on the properties of nitrogen-doped AZO thin films grown by rf reactive magnetron sputtering, Material Science and Engineering B, 172, 327 (2010). https://doi.org/10.1016/j.mseb.2010.06.008
  23. M.S. Han, D.H. Kim, H.J. Ko, J.C. Shin, H.J. Kim, D.G. Kim, A fabrication and characterictics of microbolometer detectors using VOx/ZnO/VOx multilayer thin film processing, Proc. SPIE 9070, Infrared Technology and Applications XL, 90701X (2014); doi:10.1117/12.2049513.
  24. J.K. Lee, C.S. Park, H. Kim, Sheet resistance variation of graphene grown on annealed and mechanically polished Cu films, RSC Advances 4, 62453 (2014). https://doi.org/10.1039/C4RA11734D