• Title/Summary/Keyword: Interaction System

Search Result 5,539, Processing Time 0.039 seconds

Proposal on the Enhancement of Real-time Processing and Interaction in a Camera-tracked Laser Pointer System (카메라 추적 기반 레이저 포인터 시스템의 실시간 처리와 상호작용 개선을 위한 제안)

  • Lim, Jong-Gwan;Sohn, Young-Il;Sharifi, Farrokh;Kwon, Dong-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.332-336
    • /
    • 2008
  • For reliable real-time interaction in a camera-tracked laser pointer system, a new idea is proposed and its feasibility is tested in this paper. In order to improve response time in the system and remove useless visual overload, the function of a laser pointer in the system is divided, the Region of Functional Interest is defined and subsequently its new interactions are introduced. Finally the experiments to measure reliability, accuracy, latency and usability are conducted and the results are presented.

  • PDF

Dynamic Interaction Analysis of Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator (컴퓨터 시뮬레이션과 실규모 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 응동특성 분석)

  • Yun, Dong-Jin;Han, Byung-Moon;Choy, Young-Do;Jeon, Young-Soo;Jeong, Byoung-Chang;Chung, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1047_1048
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

  • PDF

Interactive Typography System using Combined Corner and Contour Detection

  • Lim, Sooyeon;Kim, Sangwook
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • Interactive Typography is a process where a user communicates by interacting with text and a moving factor. This research covers interactive typography using real-time response to a user's gesture. In order to form a language-independent system, preprocessing of entered text data presents image data. This preprocessing is followed by recognizing the image data and the setting interaction points. This is done using computer vision technology such as the Harris corner detector and contour detection. User interaction is achieved using skeleton information tracked by a depth camera. By synchronizing the user's skeleton information acquired by Kinect (a depth camera,) and the typography components (interaction points), all user gestures are linked with the typography in real time. An experiment was conducted, in both English and Korean, where users showed an 81% satisfaction level using an interactive typography system where text components showed discrete movements in accordance with the users' gestures. Through this experiment, it was possible to ascertain that sensibility varied depending on the size and the speed of the text and interactive alteration. The results show that interactive typography can potentially be an accurate communication tool, and not merely a uniform text transmission system.

Virtual Interaction based on Speech Recognition and Fingerprint Verification (음성인식과 지문식별에 기초한 가상 상호작용)

  • Kim Sung-Ill;Oh Se-Jin;Kim Dong-Hun;Lee Sang-Yong;Hwang Seung-Gook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.192-195
    • /
    • 2006
  • In this paper, we discuss the user-customized interaction for intelligent home environments. The interactive system is based upon the integrated techniques using speech recognition and fingerprint verification. For essential modules, the speech recognition and synthesis were basically used for a virtual interaction between the user and the proposed system. In experiments, particularly, the real-time speech recognizer based on the HM-Net(Hidden Markov Network) was incorporated into the integrated system. Besides, the fingerprint verification was adopted to customize home environments for a specific user. In evaluation, the results showed that the proposed system was easy to use for intelligent home environments, even though the performance of the speech recognizer was not better than the simulation results owing to the noisy environments

  • PDF

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

Requirements Analysis and Design of an HTML5 Based e-book Viewer System Supporting User Interaction (사용자 인터랙션을 지원하는 HTML5 기반 e-book 뷰어 시스템의 요구사항 분석 및 설계)

  • Choi, Jong Myung;Park, Kyung Woo;Oh, Soo Lyul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2013
  • E-books have been popular and common in everyday life during past a decade, and the market is expected to grow much more because of the popularity of tablet computing devices such as iPad. With the helps from the devices, people want to read or experience more interactive, fun, and informative e-book contents. In order to meet those needs, we introduce requirements of an e-book viewer system that supports user interaction, 3D modeling view, and augmented reality. We also introduce some design issues of the system and its concept proof prototype system. We determine to adopt HTML5 for e-book content format because it already supports content rendering, multimedia, and user interaction. Furthermore, it is easy to implement e-book viewer because there is already Webkit component for HTML5. We also discuss design issues for integrating an Augmented Reality viewer with Webkit-based e-book viewer. This paper will give e-book viewer developers and contents developers some guidelines for new e-book systems.

3D Spatial Interaction Method using Visual Dynamics and Meaning Production of Character

  • Lim, Sooyeon
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.130-139
    • /
    • 2018
  • This study is to analyze the relationship between character and human semantic production through research on character visualization artworks and to develop a creative platform that visually expresses the formative and semantic dynamics of characters using the results will be. The 3D spatial interaction system using the character visualization proposed generates the transformation of the character in real time using the interaction with user and the deconstruction of the character structure. Transformations of characters including the intentions of the viewers provide a dynamic visual representation to the viewer and maximize the efficiency of meaning transfer by producing various related meanings. The method of dynamic deconstruction and reconstruction of the characters provided by this system creates special shapes that viewers cannot imagine until now and further extends the interpretation range of the meaning of the characters. Therefore, the proposed system not only induces an active viewing attitude from viewers, but also gives them an opportunity to enjoy watching the artwork and demonstrate creativity as a creator. This system induces new gestures of the viewer in real time through the transformation of characters in accordance with the viewer''s gesture, and has the feature of exchanging emotions with viewers.

A Study on the Development of a Three-dimensional Measurement System for Flow-Structure Interaction Using Digital Image Processing (디지털영상처리기술을 이용한 비접촉식 유체-구조물 연동운동 3차원 측정시스템 개발에 관한 연구)

  • DOH DEOG-HEE;JO HYO-JAE;SANG JI-WOONG;HWANG TAE-GYU;CHO YONG-BEOM;PYEONTN YONG-BEOM
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.1-7
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interaction has been developed. This system consists of four CCD cameras, two for capturing instantaneous flow fields and two for tracking a solid body. The three-dimensional vector fields around a cylinder are measured, while the motion of the cylinder forced by the flow field is measured, simultaneously, with the constructed system. The cylinder is suspended in the working fluid of a water channel, and the surface of the working fluid is forced sinusoidally to make the cylinder bounced. Reynolds number for the mean main stream is about 3500. The interaction between the flow fields and the cylinder motion is examined quantitatively.

Optimal design of a wind turbine supporting system accounting for soil-structure interaction

  • Ali I. Karakas;Ayse T. Daloglua
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.273-285
    • /
    • 2023
  • This study examines how the interaction between soil and a wind turbine's supporting system affects the optimal design. The supporting system resting on an elastic soil foundation consists of a steel conical tower and a concrete circular raft foundation, and it is subjected to wind loads. The material cost of the supporting system is aimed to be minimized employing various metaheuristic optimization algorithms including teaching-learning based optimization (TLBO). To include the influence of the soil in the optimization process, modified Vlasov and Gazetas elastic soil models are integrated into the optimization algorithms using the application programing interface (API) feature of the structural analysis program providing two-way data flow. As far as the optimal designs are considered, the best minimum cost design is achieved for the TLBO algorithm, and the modified Vlasov model makes the design economical compared with the simple Gazetas and infinitely rigid soil models. Especially, the optimum design dimensions of the raft foundation extremely reduce when the Vlasov realistic soil reactions are included in the optimum analysis. Additionally, as the designated design wind speed is decreased, the beneficial impact of soil interaction on the optimum material cost diminishes.

Advanced Tools for Modeling, Design and Optimization of Wind Turbine Systems

  • Iov Florin;Hansen Anca Daniela;Jauch Clemens;Sorensen Poul;Blaabjerg Frede
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.83-98
    • /
    • 2005
  • As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more important in controlling the interaction between the mechanical system of the wind turbine and the main power system. The presence of power electronics in wind turbines improves their controllability with respect not only to its mechanical loads but also to its power quality. This paper presents an overview of a developed simulation platform for the modeling, design and optimization of wind turbines. The ability to simulate the dynamic behavior of wind turbines and the wind turbine grid interaction using four simulation tools (Matlab, Saber, DIgSILENT and HAWC) is investigated, improved and extended.