• Title/Summary/Keyword: Interaction Device

Search Result 658, Processing Time 0.037 seconds

Rapid Topological Patterning of Poly(dimethylsiloxane) Microstructure (Poly(dimethylsiloxane) 미세 구조물의 신속한 기하학적 패터닝)

  • Kim, Bo-Yeol;Song, Hwan-Moon;Son, Young-A;Lee, Chang-Soo
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.8-15
    • /
    • 2008
  • We presented the modified decal-transfer lithography (DTL) and light stamping lithography (LSL) as new powerful methods to generate patterns of poly(dimethylsiloxane) (PDMS) on the substrate. The microstructures of PDMS fabricated by covalent binding between PDMS and substrate had played as barrier to locally control wettability. The transfer mechanism of PDMS is cohesive mechanical failure (CMF) in DTL method. In the LSL method, the features of patterned PDMS are physically torn and transferred onto a substrate via UV-induced surface reaction that results in bonding between PDMS and substrate. Additionally we have exploited to generate the patterning of rhodamine B and quantum dots (QDs), which was accomplished by hydrophobic interaction between dyes and PDMS micropatterns. The topological analysis of micropatterning of PDMS were performed by atomic force microscopy (AFM), and the patterning of rhodamine B and quantum dots was clearly shown by optical and fluorescence microscope. Furthermore, it could be applied to surface guided flow patterns in microfluidic device because of control of surface wettability. The advantages of these methods are simple process, rapid transfer of PDMS, modulation of surface wettability, and control of various pattern size and shape. It may be applied to the fabrication of chemical sensor, display units, and microfluidic devices.

Recent Research Progresses in 2D Nanomaterial-based Photodetectors (2D 나노소재기반 광 센서 소자의 최근 연구 동향)

  • Jang, Hye Yeon;Nam, Jae Hyeon;Cho, Byungjin
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.36-55
    • /
    • 2019
  • Atomically thin two-dimensional (2D) nanomaterials, including transition metal dichalcogenides (TMDs), graphene, boron nitride, and black phosphorus, have opened up new opportunities for the next generation optoelectronics owing to their unique properties such as high absorbance coefficient, high carrier mobility, tunable band gap, strong light-matter interaction, and flexibility. In this review, photodetectors based on 2D nanomaterials are classified with respect to critical element technology (e.g., active channel, contact, interface, and passivation). We discuss key ideas for improving the performance of the 2D photodetectors. In addition, figure-of-merits (responsivity, detectivity, response speed, and wavelength spectrum range) are compared to evaluate the performance of diverse 2D photodetectors. In order to achieve highly reliable 2D photodetectors, in-depth studies on material synthesis, device structure, and integration process are still essential. We hope that this review article is able to render the inspiration for the breakthrough of the 2D photodetector research field.

Fabrication and Electrical Properties of IMI-O Polymer LB Films (IMI-O 고분자 LB막의 제작 및 전기적 특성)

  • Jeong, Sang-Beom;Yu, Seung-Yeop;Park, Jae-Cheol;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.87-91
    • /
    • 2000
  • Metal ion complex of poly(N-(2,4-imidazoly)ethyl)maleimide-alt-l-octadecene (IMO-O) polymer used to confirm the possibility of molecular device made by Langmuir-Blodgett(LB) method. Electrical properties of the metal ion complex LB film were investigated using Metal/Insulator/Metal(MIM) structure. In the surface pressure-area($\pi$-A) isotherm of IMI-O polymer, the surface pressure at collapse point has a difference due to the interaction between polymer and metal ions. And the complex between polymer and metal ions could be verified through the investigation by Raman spectroscopy. In the current-voltage(I-V) property, the conductivity change of IMO-O polymer complexes due to the kinds of metal of metal ions couldn't be observed. However, the limiting area of molecules was changed by the concentration of the metal ions and the conductivity was increased with the occupied molecular area.

  • PDF

Structural Analysis on the Arm and Floater Structure of a Wave Energy Converter

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.5-11
    • /
    • 2015
  • Ocean waves have huge amounts of energy, even larger than wind or solar, which can be extracted by some mechanical device. This can be done by creating a system of reacting forces, in which two or more bodies move relative to each other, while at least one body interacts with the waves. This moves the floater up and down. The floaters are connected to an arm structure, which are mounted on a fixed hull structure. Hence, the structure of the floater is very important. A static structural analysis with FSI (Fluid-Structure Interaction) analysis is conducted. To achieve the pressure load for the FSI analysis, the floater is simulated on a wave generator using rigid body motion. The structural analysis is done to examine the stresses on the whole system, and four types of flange and floater are optimized. The result shows that the structure of floater with wood support is the safest.

EVALUATION OF THE APPLICABLE REACTIVITY RANGE OF A REACTIVITY COMPUTER FOR A CANDU-6 REACTOR

  • Lee, Eun Ki;Park, Dong Hwan;Lee, Whan Soo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.183-194
    • /
    • 2014
  • Recently, a CANDU digital reactivity computer system (CDRCS) to measure the worth of the liquid zone controller in a CANDU-6 was developed and successfully applied to a physics test of refurbished Wolsong Unit 1. In advance of using the CDRCS, its measureable reactivity range should be investigated and confirmed. There are two reasons for this investigation. First, the CANDU-6 has a larger reactor and smaller excore detectors than a general PWR and consequently the measured reactivity is likely to reflect the peripheral power variation only, not the whole core. The second reason is photo neutrons generated from the interaction of the moderator and gamma-rays, which are never considered in a PWR. To evaluate the limitations of the CDRCS, several tens of three-dimensional steady and transient simulations were performed. The simulated detector signals were used to obtain the dynamic reactivity. The difference between the dynamic reactivity and the static worth increases in line with the water level changes. The maximum allowable reactivity was determined to be 1.4 mk in the case of CANDU-6 by confining the difference to less than 1%.

A study on the Application of Augmented Reality Technology Exhibition Environment (증강현실 기술의 전시 환경의 응용에 관한 연구)

  • Lee, Jae-Young;Kwon, Jun-Sik
    • Journal of Digital Contents Society
    • /
    • v.16 no.6
    • /
    • pp.943-950
    • /
    • 2015
  • In this study, we propose an annotation system exhibits a secondary role using augmented reality in the exhibition environment. Common methods that utilize the description of the picture or photo booklet or audio device to the exhibition and in the form of viewing the exhibits while people describe method is used. We are using augmented reality technology, in addition to these conventional methods to provide a variety of information about the exhibits utilizing text, photos, video and audio of the multimedia medium. Where visitors can use a smart phone in hand deulgoseo, the exhibition becomes a secondary role by applying the Augmented Reality technology in tablet-based devices.

A Study on the Behavior of a Spinning Flexible Disk near a Curved Wall (곡률이 있는 벽면근처에서 고속회전하는 유연디스크의 거동 해석)

  • Lee, Ho-Ryul;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.201-207
    • /
    • 2006
  • Information storage devices have been studied to increase the storage capacity and the data transfer rate as well as to decrease the access time and their physical sizes. Optical information storage devices have been achieved high-capacity by reducing optical spot size remarkably due to the development of Blue-ray technology. Optical information storage devices usually use 1.2mm-thick polycarbonate(PC) media to get high enough stiffness. However, it would be better if we can decrease the thickness of a disk for achieving thinner device while keeping the capacity as large as possible. Decreasing the thickness of the storage media makes it difficult to read and write data because it increases the transverse vibration of the rotating disk due to the interaction with surrounding air and the vibration characteristics of thin flexible disk itself, Therefore, a special design based on the fluid mechanics is required to suppress the transverse vibration of the disk in non-contact manner so that the optical pickup can read/write data successfully. In this study, a curved wall is proposed as a stabilizer to suppress the transverse vibration of a $95{\mu}m$-thick PC disk. The characteristics of disk vibration due to a curved wall have been studied through numerical and experimental analysis from the fluid mechanics point of view. The proposed shapes are possible candidates as stabilizers to suppress the transverse vibration of a flexible disk which rotates at high speed.

  • PDF

A Study on the Facial Expression Recognition using Deep Learning Technique

  • Jeong, Bong Jae;Kang, Min Soo;Jung, Yong Gyu
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.60-67
    • /
    • 2018
  • In this paper, the pattern of extracting the same expression is proposed by using the Android intelligent device to identify the facial expression. The understanding and expression of expression are very important to human computer interaction, and the technology to identify human expressions is very popular. Instead of searching for the symbols that users often use, you can identify facial expressions with a camera, which is a useful technique that can be used now. This thesis puts forward the technology of the third data is available on the website of the set, use the content to improve the infrastructure of the facial expression recognition accuracy, to improve the synthesis of neural network algorithm, making the facial expression recognition model, the user's facial expressions and similar expressions, reached 66%. It doesn't need to search for symbols. If you use the camera to recognize the expression, it will appear symbols immediately. So, this service is the symbols used when people send messages to others, and it can feel a lot of convenience. In countless symbols, there is no need to find symbols, which is an increasing trend in deep learning. So, we need to use more suitable algorithm for expression recognition, and then improve accuracy.

A Case Study on Using Interactive Media of Large Space Structure (대공간구조물의 Interactive Media 적용 사례 분석)

  • Kim, Sic;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.71-78
    • /
    • 2011
  • Interactive media are applied to inner and outer space of small public space to enhance for the interaction between the spectator and works, also widely used in the exterior wall by LED and projector for advertisement. In the other hand, case studies of interactive media for large space have not less accomplished than those of buildings and public spaces. Thus, these studies analyzed 11 large structure examples by display, content, interface, and technology device by comparison of those cases of ordinary building public space. First interactive media for large space are found to be contents(39%), and next one is play(27%), advertisement(17%) and message(17%).

Fabrications and Property comparisons of LiNbO$_3$Mach-Zehnder Interferometric Optical Modulator with CPW (coplanar waveguide) Electrode (LiNbO$_3$ Mach-Zehnder 간섭기형 CPW(Coplanar waveguide) 광변조기 제작 및 특성비교)

  • Kim, Seong-Ku;Yoon, Hyung-Do;Yoon, Dae-Won;Park, Gye-Choon;Lee, JIn;Chung, Hae-Duck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.924-930
    • /
    • 1998
  • In this study, we describe the properties of an electro-optical modulator with CPW(coplanar waveguide) electrode fabricated on $LiNvO_3$ optical waveguide, that is applicable to optical communications. These optical modulators have features that use a buffer layer to reduce velocity mismatch between microwaves and optical wave as well as employ CPW to improve impedance and propagation mode mismatch between the electrode and the external circuits. And an annealed proton exchange technique for obtaining low-loss optical waveguides and good reproducibility was employed. Taking into consideration the mentioned background, to achieve the lower driving voltage of optical modulator, we have re-disigned the longer interaction length. And their device properties are discussed also. As a result, fabricated optical modulators of good 10Gps operation and low voltage(5.6V of the halfwave lengfth voltage) at an $1.5{\mu}m$ wavelength are achived with good reproducibility.

  • PDF