References
-
Yao, J. D., Zheng, Z. Q., Shao, J. M. & Yang, G. W. "Stable, highly-responsive and broadband photodetection based on large-area multilayered
$WS_2$ films grown by pulsed-laser deposition". Nanoscale 7, 14974-14981 (2015). https://doi.org/10.1039/C5NR03361F -
Octon, T. J., Nagareddy, V. K., Russo, S., Craciun, M. F. & Wright, C. D. "Fast High-Responsivity Few- Layer
$MoTe_2$ Photodetectors". Adv. Optical Mater. 4, 1750-1754 (2016). https://doi.org/10.1002/adom.201600290 -
Yim, C. et al. "High-Performance Hybrid Electronic Devices from Layered
$PtSe_2$ Films Grown at Low Temperature". ACS Nano 10, 9550-9558 (2016). https://doi.org/10.1021/acsnano.6b04898 -
Jiao, L., Jie, W., Yang, Z., Wang, Y. & Chen, Z. "Layer-dependent photoresponse of 2D
$MoS_2$ films prepared by pulsed laser deposition". J. Mater. Chem. C 7, 2522-2529 (2019). https://doi.org/10.1039/c8tc04612c - Huang, M. et al. "Broadband Black-Phosphorus Photodetectors with High Responsivity". Adv. Mater. 28, 3481-3485 (2016). https://doi.org/10.1002/adma.201506352
- Miao, J. et al. "Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging". Small 14, 1702082-1702088 (2018). https://doi.org/10.1002/smll.201702082
-
Jia, Z. et al. "Enhanced Photoresponse of SnSe-Nanocrystals-Decorated
$WS_2$ Monolayer Phototransistor". ACS Appl. Mater. Interfaces 8, 4781-4788 (2016). https://doi.org/10.1021/acsami.5b12137 -
Qiao, S. et al. "A vertically layered
$MoS_2$ /Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector". J. Mater. Chem. C 6, 3233-3239 (2018). https://doi.org/10.1039/C7TC05896A -
Kim, H., Patel, M., Kim, J. & Jeong, M. S. "Growth of Wafer-Scale Standing Layers of
$WS_2$ for Self- Biased High-Speed UV-Visible-NIR Optoelectronic Devices". ACS Appl. Mater. Interfaces 10, 3964-3974 (2018). https://doi.org/10.1021/acsami.7b16397 -
Sun, M. et al. "Heterostructured graphene quantum dot /
$WSe_2$ / Si photodetector with suppressed dark current and improved detectivity". Nano Research 11 (6), 3233-3243 (2018). https://doi.org/10.1007/s12274-017-1855-1 -
Nguyen, D. A. et al. "Highly Enhanced Photoresponsivity of a Monolayer
$WSe_2$ Photodetector with Nitrogen-Doped Graphene Quantum Dots". ACS Appl. Mater. Interfaces 10, 10322-10329 (2018). https://doi.org/10.1021/acsami.7b18419 -
Yu, Y. et al. "PbS-Decorated
$WS_2$ Phototransistors with Fast Response". ACS Photonics 4, 950-956 (2017). https://doi.org/10.1021/acsphotonics.6b01049 -
Hu, C. et al. "Synergistic Effect of Hybrid PbS Quantum Dots / 2D-
$WSe_2$ Toward High Performance and Broadband Phototransistors". Adv. Funct. Mater. 27, 1603605-1603612 (2017). https://doi.org/10.1002/adfm.201603605 -
Wu, H. et al. "All-Inorganic Perovskite Quantum Dot-Monolayer
$MoS_2$ Mixed-Dimensional van der Waals Heterostructure for Ultrasensitive Photodetector." Adv. Sci. 5, 1801219-1801227, (2018). -
Bera, S., Gupta, D., Ray, S. K. & Sapra, S. "
$MoSe_2$ -$Cu_2S$ Vertical p-n Nanoheterostructures for High-Performance Photodetectors". ACS Appl. Mater. Interfaces 11, 4074-4083, (2019) https://doi.org/10.1021/acsami.8b16205 -
Guo, N. et al. "Hybrid
$WSe_2$ -$In_2O_3$ Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents". ACS Appl. Mater. Interfaces 9, 34489-34496 (2017). https://doi.org/10.1021/acsami.7b10698 -
Henning, A. et al. "Charge Separation at Mixed- Dimensional Single and Multilayer
$MoS_2$ /Silicon Nanowire Heterojunctions". ACS Appl. Mater. Interfaces 10, 16760-16767 (2018). https://doi.org/10.1021/acsami.8b03133 -
Kim, S. J. et al. "Fabrication of high-performance flexible photodetectors based on Zn-doped
$MoS_2$ /graphene hybrid fibers". J. Mater. Chem. C 5, 12354-12359 (2017). https://doi.org/10.1039/C7TC04274D -
Ye, L., Li, H., Chen, Z. & Xu, J. "Near-Infrared Photodetector Based on
$MoS_2$ /Black Phosphorus Heterojunction". ACS Photonics 3, 692-699 (2016). https://doi.org/10.1021/acsphotonics.6b00079 - Long, M. et al. "Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure". Nano Lett. 16 (4), 2254-2259 (2016). https://doi.org/10.1021/acs.nanolett.5b04538
-
Chen, Z. A. "high performance self-driven photodetector based on a graphene/InSe/
$MoS_2$ vertical heterostructure". J. Mater. Chem. C 6, 12407-124122 (2018). https://doi.org/10.1039/c8tc04378g - Jeong, H. et al. "Metal-Insulator-Semiconductor Diode Consisting of Two-Dimensional Nanomaterials". Nano Lett. 16, 1858-1862 (2016). https://doi.org/10.1021/acs.nanolett.5b04936
-
Tan, H. et al. "Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown
$WS_2$ With Graphene Electrodes". ACS Nano 10 (8), 7866-7873 (2016). https://doi.org/10.1021/acsnano.6b03722 -
Tan, H. et al. "Lateral Graphene-Contacted Vertically Stacked
$WS_2$ /$MoS_2$ Hybrid Photodetectors with Large Gain". Adv. Mater. 29, 1702917-1702924 (2017). https://doi.org/10.1002/adma.201702917 -
Zheng, W. et al. "Anisotropic Growth of Nonlayered CdS on
$MoS_2$ Monolayer for Functional Vertical Heterostructures". Adv. Funct. Mater. 16, 2648-2654 (2016). https://doi.org/10.1002/adfm.201504775 -
Yang, T. et al. " Van der Waals epitaxial growth and optoelectronics of large-scale
$WSe_2$ /$SnS_2$ vertical bilayer p-n junctions". Nat. Commun. 8, 1906-1914 (2017). https://doi.org/10.1038/s41467-017-02093-z -
Xue, Y. et al. "Scalable Production of a Few-Layer
$MoS_2$ /$WS_2$ Vertical Heterojunction Array and Its Application for Photodetectors". ACS Nano 10, 573-580 (2016). https://doi.org/10.1021/acsnano.5b05596 -
Chen, C. et al. "Large-Scale Synthesis of a Uniform Film of Bilayer
$MoS_2$ on Graphene for 2D Heterostructure Phototransistors". ACS Appl. Mater. Interfaces 8 (29), 19004-19011 (2016). https://doi.org/10.1021/acsami.6b00751 -
Wang, F. et al. "Tunable GaTe-
$MoS_2$ van der Waals p-n Junctions with Novel Optoelectronic Performance". Nano Lett. 15, 7558-7566 (2015). https://doi.org/10.1021/acs.nanolett.5b03291 -
Yang, S. et al. "Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-
$MoS_2$ p-n vdW Heterostructure". ACS Appl. Mater. Interfaces 8 (4), 2533-2539 (2016). https://doi.org/10.1021/acsami.5b10001 -
Huang, Y. et al. "Van der Waals Coupled Organic Molecules with Monolayer
$MoS_2$ for Fast Response Photodetectors with Gate-Tunable Responsivity". ACS Nano 12, 4062-4073 (2018). https://doi.org/10.1021/acsnano.8b02380 -
Xu, H. et al. "High Detectivity and Transparent Few- Layer
$MoS_2$ /Glassy-Graphene Heterostructure Photodetector". Adv. Mater. 30 (13), 1706561-1706569, (2018). https://doi.org/10.1002/adma.201706561 -
Zhang, K. et al. "Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II
$MoTe_2$ /$MoS_2$ van der Waals Heterostructures". ACS Nano 10, 3852-3858 (2016). https://doi.org/10.1021/acsnano.6b00980 - Li, B. et al. "3D Band Diagram and Photoexcitation of 2D - 3D Semiconductor Heterojunctions". Nano Lett. 15, 5919-5925 (2015). https://doi.org/10.1021/acs.nanolett.5b02012
- Kim, Y. et al. "Facile Fabrication of a Two-Dimensional TMD/Si Heterojunction Photodiode by Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition". ACS Appl. Mater. Interfaces 10, 36136-36143 (2018). https://doi.org/10.1021/acsami.8b12896
-
Hwang, I., Kim, J. S., Cho, S. H., Jeong, B. & Park, C. "Flexible Vertical p-n Diode Photodetectors with Thin N-type
$MoSe_2$ Films Solution-Processed on Water Surfaces". ACS Appl. Mater. Interfaces 10, 34543-34552 (2018). https://doi.org/10.1021/acsami.8b07279 -
Geng, X. et al. "Design and construction of ultra-thin
$MoSe_2$ nanosheet- based heterojunction for highspeed and low-noise photodetection". Nano Research 9, 2641-2651 (2016). https://doi.org/10.1007/s12274-016-1151-5 -
Kim, H.-S. et al. "High-performing
$MoS_2$ -embedded Si photodetector". Materials Science in Semiconductor Processing 71, 35-41 (2017). https://doi.org/10.1016/j.mssp.2017.06.039 -
Lan, C. et al. "Zener Tunneling and Photoresponse of a
$WS_2$ /Si van der Waals Heterojunction". ACS Appl. Mater. Interfaces 8, 18375-18382 (2016). https://doi.org/10.1021/acsami.6b05109 - Yim, C. et al. "Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes". Nano Lett. 18, 1794-1800 (2018). https://doi.org/10.1021/acs.nanolett.7b05000
-
Zheng, Z. et al. "Fabrication of a high performance Zn
$In_2$ S4/Si heterostructure photodetector array for weak signal detection". J. Mater. Chem. C 6, 12928-12939 (2018). https://doi.org/10.1039/c8tc04692a -
Yang, J. et al. "
$MoS_2$ - InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity". ACS Appl. Mater. Interfaces 8, 8576-8582 (2016). https://doi.org/10.1021/acsami.5b11709 -
Pak, S. W., Chu, D., Song, D. Y., Lee, S. K. & Kim, E. K. "Enhancement of near-infrared detectability from InGaZnO thin film transistor with
$MoS_2$ light absorbing layer". Nanotechnology 28, 475206 (2017). https://doi.org/10.1088/0957-4484/28/47/475206 -
Ma, C. et al. "Heterostructured
$WS_2$ /$CH_3NH_3PbI_3$ Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity". Adv. Mater. 28 (19) 3683-3689 (2016). https://doi.org/10.1002/adma.201600069 -
Jo, S. et al. "A High-Performance
$WSe_2$ / h-BN Photodetector using a Triphenylphosphine ($PPh_3$ )-Based n-Doping Technique" Adv. Mater. 28, 4824-4831 (2016) https://doi.org/10.1002/adma.201600032 - Xiang, D. et al. "Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus". Nature Communications 6, 6485 (2015). https://doi.org/10.1038/ncomms7485
- Kang, D. et al. "High-Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self- Assembled Monolayer Doping". Adv. Funct. Mater. 25, 4219-4227 (2015). https://doi.org/10.1002/adfm.201501170
- Kang, D. et al. "Self-Assembled Layer (SAL)-Based Doping on Black Phosphorus (BP) Transistor and Photodetector". ACS Photonics 4, 1822-1830 (2017). https://doi.org/10.1021/acsphotonics.7b00398
-
Lu, J. et al. "Hybrid Bilayer
$WSe_2$ -$CH_3NH_3PbI_3$ Organolead Halide Perovskite as a High-Performance Photodetector". Angew. Chem. 128, 12124-12128 (2016). https://doi.org/10.1002/ange.201603557 - Lee, K. H., Kim, T., Shin, H. & Kim, S. "Highly Efficient Photocurrent Generation from Nano - crystalline Graphene - Molybdenum Disulfide Lateral Interfaces". Adv. Mater. 28, 1793-1798 (2016). https://doi.org/10.1002/adma.201504865
-
Wu, W. et al. "Self-Powered Photovoltaic Photodetector Established on Lateral Monolayer
$MoS_2$ -$WS_2$ Heterostructures". Nano Energy 51, 45-53 (2018). https://doi.org/10.1016/j.nanoen.2018.06.049 - Yao, J. & Yang, G. "Flexible and High-Performance All-2D Photodetector for Wearable Devices". Small 14, 1704524-1704531 (2018). https://doi.org/10.1002/smll.201704524
-
Pak, Y., Park, W., Mitra, S., Devi, A. A. S., Loganathan, K., Kumaresan, Y., Kim, Y., Cho, B., Jung, G.-Y., Hussain, M. M., & Roqan, I. S. "Enhanced Performance of
$MoS_2$ Photodetectors by Inserting an ALD-Processed$TiO_2$ Interlayer". Small 14, 1703176-1703181 (2018). https://doi.org/10.1002/smll.201703176 -
Mandrus, D., Zhou, Z. & Xu, Y. "High-Performance
$WSe_2$ Phototransistors with 2D/2D Ohmic Contacts". Nano Lett. 18, 2766-2771 (2018). https://doi.org/10.1021/acs.nanolett.7b04205 -
Liu, J. et al. "Pronounced Photovoltaic Response from Multi-layered
$MoTe_2$ Phototransistor with Asymmetric Contact Form". Nanoscale Research Letters 12, 603-610 (2017). https://doi.org/10.1186/s11671-017-2373-5 -
Zhou, C. et al. "Self-Driven Metal-Semiconductor -Metal
$WSe_2$ Photodetector with Asymmetric Contact Geometries". Adv. Funct. Mater. 28, 1802954-1802961 (2018). https://doi.org/10.1002/adfm.201802954 -
Chen, J., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. "Intrinsic and extrinsic performance limits of graphene devices on
$SiO_2$ ". Nature Nanotechnology 3, 206-209 (2008). https://doi.org/10.1038/nnano.2008.58 -
Phys, A. "
$MoS_2$ nanosheet photodetectors with ultrafast response". Appl. Phys. Lett. 111, 153502 (2017). https://doi.org/10.1063/1.5001671 - Britnell, L. et al. "Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers". Nano Lett. 12, 1707-1710 (2012). https://doi.org/10.1021/nl3002205
- Britnell, L. et al. "Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures". Science 335, 947-950 (2012). https://doi.org/10.1126/science.1218461
-
Samassekou, H. et al. "Viable route towards largearea 2D
$MoS_2$ using magnetron sputtering". 2D Mater. 4, 021002 (2017). https://doi.org/10.1088/2053-1583/aa5290 -
Nazir, G. et al. "Comparison of Electrical and Photoelectrical Properties of
$ReS_2$ Field-Effect Transistors on Different Dielectric Substrates". ACS Appl. Mater. Interfaces 10, 32501-32509 (2018). https://doi.org/10.1021/acsami.8b06728 - Zhu, Y. et al. "High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector". ACS Appl. Mater. Interfaces 10, 43291-43298 (2018). https://doi.org/10.1021/acsami.8b14076
-
Huo, N., Gupta, S. & Konstantatos, G. "
$MoS_2$ -HgTe Quantum Dot Hybrid Photodetectors beyond 2${\mu}$ m>>. Adv. Mater. 29, 1606576-1606580 (2017). https://doi.org/10.1002/adma.201606576 -
Liu, Q. et al. "Printable Transfer-Free and Wafer- Size
$MoS_2$ /Graphene van der Waals Heterostructures for High-Performance Photodetection". ACS Appl. Mater. Interfaces 9, 12728-12733 (2017). https://doi.org/10.1021/acsami.7b00912 -
Parzinger, E., et al. "Photocatalytic Stability of Single-and Few-Layer
$MoS_2$ ". ACS Nano 9 (11), 11302-11309 (2015). https://doi.org/10.1021/acsnano.5b04979 -
Yamamoto, M., Dutta, S., Aikawa, S., Nakaharai, S. & Wakabayashi, K. "Self-Limiting Layer-by-Layer Oxidation of Atomically Thin
$WSe_2$ ". Nano Lett. 15, 2067-2073 (2015). https://doi.org/10.1021/nl5049753 - Ahn, S. et al. "Prevention of Transition Metal Dichalcogenide Photodegradation by Encapsulation with h‑BN Layers". ACS Nano 10 (9), 8973-8979 (2016). https://doi.org/10.1021/acsnano.6b05042
-
Cho, A., Song, M., Kang, D. & Kwon, J. "Two-Dimensional
$WSe_2$ /$MoS_2$ p-n Heterojunction-Based Transparent Photovoltaic Cell and Its Performance Enhancement by Fluoropolymer Passivation". ACS Appl. Mater. Interfaces 10, 35972-35977 (2018). https://doi.org/10.1021/acsami.8b12250 -
Kufer, D. & Konstantatos, G. "Highly Sensitive, Encapsulated
$MoS_2$ Photodetector with Gate Controllable Gain and Speed". Nano Lett. 15, 7307-7313 (2015). https://doi.org/10.1021/acs.nanolett.5b02559 - Namgung, S., Shaver, J., Oh, S. & Koester, S. J. "Multimodal Photodiode and Phototransistor Device Based on Two-Dimensional Materials". ACS Nano 10 (11), 10500-10506 (2016). https://doi.org/10.1021/acsnano.6b06468
-
Gong, F. et al. "High-Sensitivity Floating-Gate Phototransistors Based on
$WS_2$ and$MoS_2$ ". Adv. Funct. Mater. 26, 6084-6090 (2016). https://doi.org/10.1002/adfm.201601346 -
Wang, X. et al. "Ultrasensitive and Broadband
$MoS_2$ Photodetector Driven by Ferroelectrics". Adv. Mater. 27, 6575-6581 (2015). https://doi.org/10.1002/adma.201503340 -
Wu, G., Wang, X., Wang, P., Huang, H. & Chen, Y . "Visible to short wavelength infrared
$In_2$ $Se_3$ -nanoflake photodetector gated by a ferroelectric polymer." Nanotechnology 27, 364002-364008 (2016). https://doi.org/10.1088/0957-4484/27/36/364002