P2P (Peer to Peer) techniques have been well applied to file sharing due to its cost-effectiveness and convenience. Dynamic network evolution is another good thing for P2P according to addition and deletion of nodes and change of files a node has. Our research proposes a P2P-based KMS (Knowledge Management System). Knowledge of enterprises spreads all over sub-organizations like oversea factories and sales departments and is changed in dynamic manner. P2P techniques are, therefore well matched with knowledge management domain. In order to increase search efficiency, we introduce social network theory into P2P-based KMS. Social network technique makes the most similar nodes (in KMS domain, nodes which has the most similar knowledge) its own neighbors, which makes eventually search efficiency increase. We developed our prototype system P2P-SN-KMS and evaluated by simulation.
As the SoC designs complexity constantly increases, the simulation that uses their software models simply takes too much time. To solve this problem, FPGA-based logic emulators have been developed and commonly used in the industry. However, FPGA-based logic emulators are facing with the problems of which not only very low FPGA resource usage rate due to the very limited number of pins in FPGAs, but also the emulation speed getting slow drastically as the complexity of designs increases. In this paper, we proposed a new innovative emulation architecture and its software that has high FPGA resource usage rate and makes the emulation extremely fast. The proposed emulation system has merits to overcome the FPGA pin limitation by pipelined ring which transfers multiple logic signal through a single physical pin, and it also makes possible to use a high speed system clock through the intelligent ring topology. In this topology, not only all signal transfer channels among EPGAs are totally separated from user logic so that a high speed system clock can be used, but also the depth of combinational paths is kept swallow as much as possible. Both of these are contributed to achieve high speed emulation. For pipelined singnals transfer among FPGAs we adopt a few heuristic scheduling having low computation complexity. Experimental result with a 12 bit microcontroller has shown that high speed emulation possible even with these simple heuristic scheduling algorithms.
Export containers in a container terminal are usually classified into a few weight groups and those belonging to the same group are placed together on a same stack. The reason for this stacking by weight groups is that it becomes easy to have the heavier containers be loaded onto a ship before the lighter ones, which is important for the balancing of the ship. However, since the weight information available at the time of container arrival is only an estimate, those belonging to different weight groups are often stored together on a same stack. This becomes the cause of extra moves, or rehandlings, of containers at the time of loading to fetch out the heavier containers placed under the lighter ones. In this paper, we use machine learning techniques to derive a classifier that can classify the containers into the weight groups with improved accuracy. We also show that a more useful classifier can be derived by applying a cost-sensitive learning technique, for which we introduce a scheme of searching for a good cost matrix. Simulation experiments have shown that our proposed method can reduce about 5$\sim$7% of rehandlings when compared to the traditional weight grouping method.
One of the crucial elements to fully facilitate the various benefits of intelligent transportation systems (ITS) is to obtain more reliable traffic monitoring in real time. To date, point and section-based traffic measurements have been available through existing surveillance technologies, such as loops and automatic vehicle identification (AVI) systems. However, seamless and more reliable traffic data are required for more effective traffic information provision and operations. Technology advancements including vehicle tracking and wireless communication enable the acceleration of the availability of individual vehicle travel information. This study presents a UBIquitous PRObe vehicle Surveillance System (UBIPROSS) using vehicle-to-vehicle (V2V) wireless communications. Seamless vehicle travel information, including origin-destination information, speed, travel times, and other data, can be obtained by the proposed UBIPROSS. A set of parameters associated with functional requirements of the UBIPROSS, which include the market penetration rate (MPR) of equipped vehicles, V2V communication range, and travel time update interval, are investigated by a Monte Carlo simulation- (MCS) based evaluation framework. In addition, this paper describes prototypical implementation. Field test results and identified technical issues are also discussed. It is expected that the proposed system would be an invaluable precursor to develop a next-generation traffic surveillance system.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.2
/
pp.95-102
/
2022
It is a study for the evaluation of the stability of the distribution automation system for the expansion of renewable energy. Through the Renewable Energy 3020 Implementation Plan, the government plans to expand new renewable energy and convert it to participatory energy that improves the quality of life of the people by 2030. The government has set a target of 20% of domestic supply energy for renewable energy generation by 2030. It is planning to establish more than 95 percent of its new facilities with clean energy such as solar power and wind power. By expanding the supply of renewable energy, new energy businesses and distributed power industry were fostered, and short-distance, low-voltage, and small-scale power generation were rapidly expanded rather than large-scale power development in the past. Due to this demand, the importance of power distribution facility operation has emerged and the need for distribution automation system is increasing. This paper discusses the development of a power distribution simulator for the performance and function evaluation of power distribution automation systems and presents the results of an interlocking test with the power distribution automation system. In order to introduce an advanced system into the power distribution system, it is necessary to take advantage of the transmission and distribution system. The DNP3.0 protocol is used in the distribution system and the IEC61850 protocol is used in the transmission and distribution system. It was concluded that the functions and performance of operations were satisfied when these two protocols are mixed and used in the distribution automation system.
Eunkyu Lee;Jae-Seok Han;Kwang-Hyun Ko;Eunbi Park;Kyunghun Park;Seong-Phil Ann
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.200-201
/
2023
Digital twin technology is used in various fields as a method of creating a virtual world to minimize the cost of solving problems in the real world, and is also actively used in the maritime field, such as large-scale systems such as ships and offshore plants. In this paper, we tried to build a digital twin of coastal waters using a ship-handling simulator. The digital twin of the coastal waters developed in this way can be used to safely manage Korea's coastal waters, where maritime traffic is complicated, by providing a actual maritime traffic data. It can be usefully used to develop and advance technologies related to maritime autonomous surface ships and intelligent maritime traffic information services in coastal waters. In addition, it can be used as a 3D-based monitoring equipment for areas where physical monitoring is difficult but real-time maritime traffic monitoring is necessary, and can provide functions to safely manage maritime traffic situations such as aerial views of ports/control areas, bridge views/blind sector views of ships in operation.
Recently there are many development and support policies for start-up companies because of successful venture companies related to ICT services. However, as these policies have focused on the support for the initial stage of start-up, many start-up companies have difficulties to continuously grow up. The main reason for these difficulties is that they recognize start-up tasks as independent activities. However, many experts or related articles say that start-up tasks are composed of related processes from the initial stage to the stable stage of start-up firms. In this study, we models the start-up processes based on the survey collected by the start-up companies, and analyze the start-up process of ICT service companies with process mining techniques. Through process mining analysis, we can draw a sequential flow of tasks for start-ups and the characteristics of them. The analysis of start-up businessman, idea derivation, creating business model, business diversification processes are resulted as important processes, but marketing activity and managing investment funds are not. This result means that marketing activity and managing investment funds are activities that need ongoing attention. Moreover, we can find temporal and complementary tasks which could not be captured by independent individual-level activity analysis. Our process analysis results are expected to be used in simulation-based web-intelligent system to support start-up business, and more cumulated start-up business cases will be helpful to give more detailed individual-level personalization service. And our proposed process model and analyzing results can be used to solve many difficulties for start-up companies.
Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.
A study was conducted to find mechanism and spray characteristics of a mini-sprinkler with downward spray to develop a new design type to be able to prevent drop water. The experiments were executed in a plastic greenhouse to minimize the effect of the wind. Data was collected at five different operation pressures and at 4 different raiser heights. Spray characteristics of the sprinkler such as effective radius, effective area, mean application depth, absolute maximum application depth, effective maximum application depth and coefficient of variation were determined. In order to analyze the mechanism and packing supporter of sprinkler, the numerical simulation using ABAQUS was performed. The optimum pressure for preventing drop water was determined.
This paper is designed to report the results of development and validation procedures in relation to the Freeway Incident Management System (FIMS) prototype development as part of Intelligent Transportation Systems Research and Development program. The central core of the FIMS is an integration of the component parts and the modular, but the integrated system for freeway management. The whole approach has been component-orientated, with a secondary emphasis being placed on the traffic characteristics at the sites. The first action taken during the development process was the selection of the required data for each components within the existing infrastructure of Korean freeway system. After through review and analysis of vehicle detection data, the pilot site led to the utilization of different technologies in relation to the specific needs and character of the implementation. This meant that the existing system was tested in a different configuration at different sections of freeway, thereby increasing the validity and scope of the overall findings. The incident detection module has been performed according to predefined system validation specifications. The system validation specifications have identified two component data collection and analysis patterns which were outlined in the validation specifications; the on-line and off-line testing procedural frameworks. The off-line testing was achieved using asynchronous analysis, commonly in conjunction with simulation of device input data to take full advantage of the opportunity to test and calibrate the incident detection algorithms focused on APID, DES, DELOS and McMaster. The simulation was done with the use of synchronous analysis, thereby providing a means for testing the incident detection module.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.