• 제목/요약/키워드: Intelligent Personalized System

검색결과 171건 처리시간 0.035초

Information Privacy Concern in Context-Aware Personalized Services: Results of a Delphi Study

  • Lee, Yon-Nim;Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • 제20권2호
    • /
    • pp.63-86
    • /
    • 2010
  • Personalized services directly and indirectly acquire personal data, in part, to provide customers with higher-value services that are specifically context-relevant (such as place and time). Information technologies continue to mature and develop, providing greatly improved performance. Sensory networks and intelligent software can now obtain context data, and that is the cornerstone for providing personalized, context-specific services. Yet, the danger of overflowing personal information is increasing because the data retrieved by the sensors usually contains privacy information. Various technical characteristics of context-aware applications have more troubling implications for information privacy. In parallel with increasing use of context for service personalization, information privacy concerns have also increased such as an unrestricted availability of context information. Those privacy concerns are consistently regarded as a critical issue facing context-aware personalized service success. The entire field of information privacy is growing as an important area of research, with many new definitions and terminologies, because of a need for a better understanding of information privacy concepts. Especially, it requires that the factors of information privacy should be revised according to the characteristics of new technologies. However, previous information privacy factors of context-aware applications have at least two shortcomings. First, there has been little overview of the technology characteristics of context-aware computing. Existing studies have only focused on a small subset of the technical characteristics of context-aware computing. Therefore, there has not been a mutually exclusive set of factors that uniquely and completely describe information privacy on context-aware applications. Second, user survey has been widely used to identify factors of information privacy in most studies despite the limitation of users' knowledge and experiences about context-aware computing technology. To date, since context-aware services have not been widely deployed on a commercial scale yet, only very few people have prior experiences with context-aware personalized services. It is difficult to build users' knowledge about context-aware technology even by increasing their understanding in various ways: scenarios, pictures, flash animation, etc. Nevertheless, conducting a survey, assuming that the participants have sufficient experience or understanding about the technologies shown in the survey, may not be absolutely valid. Moreover, some surveys are based solely on simplifying and hence unrealistic assumptions (e.g., they only consider location information as a context data). A better understanding of information privacy concern in context-aware personalized services is highly needed. Hence, the purpose of this paper is to identify a generic set of factors for elemental information privacy concern in context-aware personalized services and to develop a rank-order list of information privacy concern factors. We consider overall technology characteristics to establish a mutually exclusive set of factors. A Delphi survey, a rigorous data collection method, was deployed to obtain a reliable opinion from the experts and to produce a rank-order list. It, therefore, lends itself well to obtaining a set of universal factors of information privacy concern and its priority. An international panel of researchers and practitioners who have the expertise in privacy and context-aware system fields were involved in our research. Delphi rounds formatting will faithfully follow the procedure for the Delphi study proposed by Okoli and Pawlowski. This will involve three general rounds: (1) brainstorming for important factors; (2) narrowing down the original list to the most important ones; and (3) ranking the list of important factors. For this round only, experts were treated as individuals, not panels. Adapted from Okoli and Pawlowski, we outlined the process of administrating the study. We performed three rounds. In the first and second rounds of the Delphi questionnaire, we gathered a set of exclusive factors for information privacy concern in context-aware personalized services. The respondents were asked to provide at least five main factors for the most appropriate understanding of the information privacy concern in the first round. To do so, some of the main factors found in the literature were presented to the participants. The second round of the questionnaire discussed the main factor provided in the first round, fleshed out with relevant sub-factors. Respondents were then requested to evaluate each sub factor's suitability against the corresponding main factors to determine the final sub-factors from the candidate factors. The sub-factors were found from the literature survey. Final factors selected by over 50% of experts. In the third round, a list of factors with corresponding questions was provided, and the respondents were requested to assess the importance of each main factor and its corresponding sub factors. Finally, we calculated the mean rank of each item to make a final result. While analyzing the data, we focused on group consensus rather than individual insistence. To do so, a concordance analysis, which measures the consistency of the experts' responses over successive rounds of the Delphi, was adopted during the survey process. As a result, experts reported that context data collection and high identifiable level of identical data are the most important factor in the main factors and sub factors, respectively. Additional important sub-factors included diverse types of context data collected, tracking and recording functionalities, and embedded and disappeared sensor devices. The average score of each factor is very useful for future context-aware personalized service development in the view of the information privacy. The final factors have the following differences comparing to those proposed in other studies. First, the concern factors differ from existing studies, which are based on privacy issues that may occur during the lifecycle of acquired user information. However, our study helped to clarify these sometimes vague issues by determining which privacy concern issues are viable based on specific technical characteristics in context-aware personalized services. Since a context-aware service differs in its technical characteristics compared to other services, we selected specific characteristics that had a higher potential to increase user's privacy concerns. Secondly, this study considered privacy issues in terms of service delivery and display that were almost overlooked in existing studies by introducing IPOS as the factor division. Lastly, in each factor, it correlated the level of importance with professionals' opinions as to what extent users have privacy concerns. The reason that it did not select the traditional method questionnaire at that time is that context-aware personalized service considered the absolute lack in understanding and experience of users with new technology. For understanding users' privacy concerns, professionals in the Delphi questionnaire process selected context data collection, tracking and recording, and sensory network as the most important factors among technological characteristics of context-aware personalized services. In the creation of a context-aware personalized services, this study demonstrates the importance and relevance of determining an optimal methodology, and which technologies and in what sequence are needed, to acquire what types of users' context information. Most studies focus on which services and systems should be provided and developed by utilizing context information on the supposition, along with the development of context-aware technology. However, the results in this study show that, in terms of users' privacy, it is necessary to pay greater attention to the activities that acquire context information. To inspect the results in the evaluation of sub factor, additional studies would be necessary for approaches on reducing users' privacy concerns toward technological characteristics such as highly identifiable level of identical data, diverse types of context data collected, tracking and recording functionality, embedded and disappearing sensor devices. The factor ranked the next highest level of importance after input is a context-aware service delivery that is related to output. The results show that delivery and display showing services to users in a context-aware personalized services toward the anywhere-anytime-any device concept have been regarded as even more important than in previous computing environment. Considering the concern factors to develop context aware personalized services will help to increase service success rate and hopefully user acceptance for those services. Our future work will be to adopt these factors for qualifying context aware service development projects such as u-city development projects in terms of service quality and hence user acceptance.

사용자 맞춤형 강의 추천을 위한 대화 시스템 연구 (Dialogue System for User Customized Lecture Recommendation)

  • 최예린;연희연;김동근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.84-86
    • /
    • 2022
  • 인공지능 대화 기술이 발달하며 다양한 분야에서 사용자의 의도에 따른 적절한 대응이 가능한 챗봇이 적용되고 있다. 특히 사용자 문의 및 상담이 많은 교육 도메인에서의 챗봇 도입 중요성은 증가하고 있다. 하지만 현재까지의 챗봇은 단순 대응이나 사용자가 자주 사용하는 기능 위주로 대응이 이루어지고 있다. 또한 교육콘텐츠가 다양화되고 증가함에 따라 인공지능을 통해 맞춤형 추천이 가능한 추천 시스템 연구가 활발해지고 있다. 이러한 대화 시스템과 추천 시스템에 대한 각 연구 분야는 같은 도메인에서 핵심적인 요소임에도 불구하고 별도로 진행되고 있는 한계점을 가지고 있다. 따라서 본 연구에서는 사용자 맞춤형 강의 콘텐츠를 추천할 수 있는 추천 시스템과 부가 기능에 대한 대응이 가능한 대화 시스템이 결합된 사용자 맞춤형 강의 추천 대화 시스템을 제안한다. 이를 통해 다양화 및 개인화 되어가는 교육도메인에서의 챗봇 적용으로 업무 효율성 및 사용자 만족도가 향상되기를 기대한다.

  • PDF

스마트 전시환경에서 순차적 인공신경망에 기반한 감정인식 모델 (Emotion Detection Model based on Sequential Neural Networks in Smart Exhibition Environment)

  • 정민규;최일영;김재경
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.109-126
    • /
    • 2017
  • 최근 지능형 서비스를 제공하기 위해 감정을 인식하기 위한 많은 연구가 진행되고 있다. 특히, 전시 분야에서 관중에게 개인화된 서비스를 제공하기 위해 얼굴표정을 이용한 감정인식 연구가 수행되고 있다. 그러나 얼굴표정은 시간에 따라 변함에도 불구하고 기존연구는 특정시점의 얼굴표정 데이터를 이용한 문제점이 있다. 따라서 본 연구에서는 전시물을 관람하는 동안 관중의 얼굴표정의 변화로부터 감정을 인식하기 위한 예측 모델을 제안하였다. 이를 위하여 본 연구에서는 시계열 데이터를 이용하여 감정예측에 적합한 순차적 인공신경망 모델을 구축하였다. 제안된 모델의 유용성을 평가하기 위하여 일반적인 표준인공신경망 모델과 제안된 모델의 성능을 비교하였다. 시험결과 시계열성을 고려한 제안된 모델의 예측이 더 뛰어남으로 보였다.

소셜챗봇 구축에 필요한 관계성 추론을 위한 텍스트마이닝 방법 (Identifying Social Relationships using Text Analysis for Social Chatbots)

  • 김정훈;권오병
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.85-110
    • /
    • 2018
  • 챗봇은 음성, 이미지, 비디오 또는 텍스트와 같은 다양한 매채를 이용하여 대화가 가능한 대화형 어시스턴트이자 인공지능을 기반으로 사용자의 질문에 답하거나 문제를 해결할 수 있는 사용자 친화적 프로그램이다. 하지만 현재 챗봇은 사용자가 요청한 작업을 정확하게 수행하는 기술적측면에 초점이 맞추어져 있으며, 개인화된 대화로 사용자와 챗봇간의 관계성 구축에는 제한적이어서 일부 사례에도 불구하고 소셜챗봇이 되기에는 미흡한 상태이다. 만약 인간의 사회성을 나타내는 특징 중 하나인 관계성을 챗봇이 인식하여 알맞게 대화를 하여 문제를 해결할 수 있다면, 개인화된 대화를 할 수 있을 뿐만 아니라 인간과 유사한 대화를 할 수 있을 것이다. 본 연구의 목적은 사용자가 입력한 내용을 기반으로 챗봇과 사용자 간의 관계성을 추론하고 대화 상황에 맞게 대화 상대가 적절한 대화를 수행 할 수 있는 텍스트 분석 방법을 제안하는 것이다. 본 연구의 실험 및 평가를 하기 위하여 실제 SNS대화 내용을 사용하였다. 분석결과 개인정보 보호를 위해 사용자의 개인 프로필 정보가 제외된 방법에서도 우수한 결과를 나타내어 소셜 챗봇에 적합한 방법으로 검증되었다.

전자상거래에서의 벡터 공간 모델링을 통한 Configuration 시스템 (Configuration System through Vector Space Modeling In I-Commerce)

  • 김세형;조근식
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.149-159
    • /
    • 2001
  • 최근 전자상거래에는 일대일 마케팅이나 협력적 정보여과기법등을 이용한 다양한 추천서비스가 도입되고 있다. 이러한 추천 서비스의 형태는 다양한 제약 조건을 갖고 계산 복잡도가 높은 제품의 경우에는 고객을 만족시킬 만큼 적절한 추천서비스가 이루어지기 어려울 것으로 본다. 본 논문에서는 Clancey의 Classification Problem Solving 방법과 제약조건 기반 Configuration기술을 통합하여, 이러한 문제를 해결할 수 있는 방법을 제시하였다. 이 방법은 Clancey의 이론에 따라 구성 복잡도가 높은 제품의 해집합 도메인을 분할하여 문제의 복잡도를 줄일 수 있도록 하였으며, 여기에서 선택된 도메인을 제약조건 기반 Configuration기술에 적용시킴으로써, 구매자와 제품 컴포넌트 사이에 존재하는 제약조건을 처리할 수 있도록 하였다. 제약조건기반 Configuration기술은 구매자에게 적합한 제품을 구성하기 위해서 제막 조건 판촉 문제(Constraint Satisfaction Problem; CSP)해결 기법을 이용한다. 또한 Clancey이론은 구매자의 만족도를 고려하기 위해서 정보검색 분야의 벡터공간 모델링 방법을 변형하여 적용하였다. 마지막으로 본 모델의 평가를 위해 전체 시스템의 수행시간 및 구매자 만족도를 비교 분석하였다

  • PDF

연관 규칙과 협력적 여과 방식을 이용한 추천 시스템 (Recommender System using Association Rule and Collaborative Filtering)

  • 이기현;고병진;조근식
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.91-103
    • /
    • 2002
  • 기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다. 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다.

  • PDF

실시간 양방향 소통을 통한 이러닝 학습 지원 플랫폼의 구축 (Development of e-learning support platform through real-time two-way communication)

  • 김은미;최종원
    • 한국산학기술학회논문지
    • /
    • 제20권7호
    • /
    • pp.249-254
    • /
    • 2019
  • 인공지능(AI), 사물인터넷(IoT), 빅데이터 등 4차 산업혁명에 따른 지능 정보기술의 발전과 함께 교육 분야도 이러닝(e-Learning)을 중심으로 빠르게 재편되며 '에듀테크' 개념이 확산되고 있다. 현재 선행업체들이 온라인 교육 서비스를 실시하고 있으나 실시간으로 이루어지는 양방향 커뮤니케이션이 어렵다. 또한, 오프라인 수업의 경우 학생의 수가 많고, 시간이 한정되어 있을 뿐 만 아니라 질문할 기회를 갖지 못하는 경우가 많다. 본 논문은 이러한 문제들을 해결하기 위해 오프라인이 가지는 즉문즉답의 효율성과 온라인에서의 개방성이라는 장점을 접목하여 온라인과 오프라인상에서의 질문을 자유롭게 할 수 있는 실시간 양방향 학습 질문 및 답변 운영 시스템을 개발한다. 개발된 시스템은 실시간 개인별 맞춤형 교육 시스템으로서 답변자가 질문자의 상황을 실시간으로 확인하고 질문자의 요청에 맞는 맞춤형 답변을 제공함으로써 한 번의 연결로 질문을 해결할 수 있다. 또한 시스템의 이용 시간을 초단위로 측정하여 관리함으로써 질문자와 답변자가 효율적으로 시스템을 활용하게 할 수 있다.

학습자 중심의 맞춤형 교육을 위한 학습 경험 데이터 수집 및 분석 체계 연구 (A Study on the Data Collection and Analysis System for Learning Experiences in Learner-Centered Customized Education)

  • 김상우;이명숙
    • 실천공학교육논문지
    • /
    • 제16권2호
    • /
    • pp.159-165
    • /
    • 2024
  • 본 연구는 학습자 중심의 맞춤형 교육을 위한 지능형 학습활동 데이터를 수집하기 위한 전체 체계를 연구하였다. 학습활동 데이터수집 표준인 xAPI, Caliper analytics, cmi5의 특징들을 비교 분석하였고, 이러한 표준화된 데이터뿐만 아니라 표준화되지 않은 학습활동 데이터도 모두 빅데이터로 저장되어 인공지능 학습분석을 할 수 있는 체계를 마련하였다. 그 결과 데이터 유형 정의, xAPI 적용한 학습데이터 표준화, 빅데이터 저장, 학습분석(통계 기반 및 AI 기반), 학습자 맞춤형 서비스인 5개의 단계로 구성하였다. 이를 통해 인공지능 기술을 적용한 학습데이터 분석을 위한 기반을 마련하고자 하였다. 향후 연구에서는 전체 체계를 3개의 단계로 나누어 구현하고 실행하면서 설계에서 부족한 부분을 수정·보완할 것이다.

PDA용 개인화 에이전트 시스템 (PDA Personalized Agent System)

  • 표석진;박영택
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.345-352
    • /
    • 2002
  • 무선 인터넷을 이용하는 사용자는 정보의 양의 따른 시간적 통신비용의 증가 문제로 개인화 에이전트가 사용자의 관심에 따라 서비스를 제공하는 기능과 맞춤화된 정보를 제공하는 기능, 지식 기반 방식으로 정보를 예측하는 기능을 가지기를 바라고 있다. 본 논문에서는 이와 같이 무선 인터넷을 사용하는 사용자를 위한 PDA 개인화 에이전트 시스템을 구축하고자 한다. PDA 개인화 에이전트 시스템 구축을 위해 프로파일 기반의 에이전트 엔진과 사용자 프로파일을 이용한 지식기반 방식을 사용한다. 사용자가 웹페이지에서 행하는 행위들을 모니터링하여 사용자가 관심 가지는 문서를 파악하고 정보 검색을 통해 얻어진 문서를 분석하여 사용자 각각의 관심 문서로 나누어 서비스하게 된다. 모니터링 되어진 문서를 효과적으로 분석하기 위해 unsupervised clustering 기계학습 방식인 Cobweb을 이용한다. unsupervised 기계 학습은 conceptual 방식을 이용하여 검색되어진 정보를 사용자의 관심 분야별로 clustering한다. 클러스터링을 통해 얻어진 결과를 다시 기계학습을 통해 사용자 관심문서에 대한 프로파일을 생성하게 된다. 이렇게 만들어진 프로파일을 룰(Rule)로 만들어 이를 기반으로 사용자에게 서비스하게 된다. 이러한 룰은 사용자의 모니터링 결과로 얻어지기 때문에 주기적으로 업데이트하게 된다. 제안하는 시스템은 인터넷신문이나 웹진 등에서 사용자들에게 뉴스를 전달하기 위한 목적으로 생성하는 뉴스문서를 특정 대상으로 선정하였고 사용자 정보를 이용한 검색을 실시하고 결과로 얻어진 정보를 정보 분류를 통해 PDA나 휴대폰을 통해 사용자에게 제공한다. 상품을 검색하기 위한 검색노력을 줄이고, 검색된 대안들로부터 구매자와 시스템이 웹상에서 서로 상호작용(interactivity) 하여 해를 찾고, 제약조건과 규칙들에 의해 적합한 해를 찾아가는 방법을 제시한다. 본 논문은 구성기반 예로서 컴퓨터 부품조립을 사용해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of compu

  • PDF

지능형 전시 서비스 구현을 위한 멀티모달 감정 상태 추정 모형 (Multimodal Emotional State Estimation Model for Implementation of Intelligent Exhibition Services)

  • 이기천;최소윤;김재경;안현철
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.1-14
    • /
    • 2014
  • 최근 관람객의 반응에 따라 실시간으로 대응하여 관객의 몰입과 만족도를 증대시키는 인터랙티브 전시 서비스에 대한 학계와 산업계의 관심이 높아지고 있다. 이러한 인터랙티브 전시 서비스를 효과적으로 구현하기 위해서는 관객의 반응을 통해 해당 관객이 느끼는 감정 상태를 추정할 수 있는 지능형 기술의 도입이 요구된다. 인간의 감정 상태를 추정하기 위한 시도들은 많은 연구들에서 이루어져 왔고, 그 중 대부분은 사람의 얼굴 표정이나 소리 반응을 통해 감정 상태를 추정하는 방식을 도입하고 있다. 하지만, 최근 소개되고 있는 연구들에 따르면 단일 반응이 아닌 여러 반응을 종합적으로 고려하는 이른바 멀티 모달(multimodal) 접근을 사용했을 경우, 인간의 감정 상태를 보다 정확하게 추정할 수 있다. 이러한 배경에서 본 연구는 키넥트 센서를 통해 측정되는 관객의 얼굴 표정, 몸짓, 움직임 등을 종합적으로 고려한 새로운 멀티모달 감정 상태 추정 모형을 제안하고 있다. 제안모형의 예측 기법으로는 방대한 양의 데이터를 효과적으로 처리하기 위해, 몬테칼로(Monte Carlo) 방법인 계층화 샘플링(stratified sampling) 방법에 기반한 다중회귀분석을 적용하였다. 제안 모형의 성능을 검증하기 위해, 15명의 피실험자로부터 274개의 독립 및 종속변수들로 구성된 602,599건의 관측 데이터를 수집하여 여기에 제안 모형을 적용해 보았다. 그 결과 10~15% 이내의 평균오차 범위 내에서 피실험자의 쾌/불쾌도(valence) 및 각성도(arousal) 상태를 정확하게 추정할 수 있음을 확인할 수 있었다. 이러한 본 연구의 제안 모형은 비교적 구현이 간단하면서도 안정성이 높아, 향후 지능형 전시 서비스 및 기타 원격학습이나 광고 분야 등에 효과적으로 활용될 수 있을 것으로 기대된다.