• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.032 seconds

User Assistant Soft Computing Method for 3D Effect Optimization (입체효과 최적화를 위한 사용자 보조 소프트컴퓨팅 기법)

  • Choi Woo-Kyung;Kim Seong-Joo;Jeon Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.69-74
    • /
    • 2005
  • In this paper, we suggested user assistant soft computing method for 3D effect optimization. In order to maximize 3D effect of image, intervals among cameras have to be set up properly according to distance between cameras and an object. Two data such as interval and distance was obtained to use in neural network as the data for learning. However, if the data for learning was obtained by only human's subjective views, it could be that the obtained data was not optimal for learning because the data had an accidental ewer To obtain optimal data lot learning, we added candidature data to obtained data through data analysis, and then selected the most proper data between the candidature data and the obtained data for learning in neural network. Usually, 3D effect of image was affected by both distance from an object to cameras and an object size. Therefore, we suggested fuzzy inference model which was able to represent two factors like distance and size. Candidature data was added by fuzzy model. In the simulation result, we verified that the mote the obtained data was affected by human's subjective views, the more effective the suggested system was.

A Study on Map Mapping of Individual Vehicle Big Data Based on Space (공간 기반의 개별 차량 대용량 정보 맵핑에 관한 연구)

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.75-82
    • /
    • 2021
  • The number of traffic accidents is about 230,000, and due to non-recurring congestion and high driving speed, the number of deaths per traffic accident on freeways is more than twice compared to other roads. Currently, traffic information is provided based on nodes and links using the centerline of the road, but it does not provide detailed speed information. Recently, installing sensors for vehicles to monitor obstacles and measure location is becoming common not only for autonomous vehicles but also for ordinary vehicles as well. The analysis using large-capacity location-based data from such sensors enables real time service according to processing speed. This study presents an mapping method for individual vehicle data analysis based on space. The processing speed of large-capacity data was increased by using method which applied a quaternary notation basis partition method that splits into two directions of longitude and latitude respectively. As the space partition was processed, the average speed was similar, but the speed standard deviation gradually decreased, and decrease range became smaller after 9th partition.

Case-Based Reasoning Framework for Data Model Reuse (데이터 모델 재사용을 위한 사례기반추론 프레임워크)

  • 이재식;한재홍
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.33-55
    • /
    • 1997
  • A data model is a diagram that describes the properties of different categories of data and the associations among them within a business or information system. In spite of its importance and usefulness, data modeling activity requires not only a lot of time and effort but also extensive experience and expertise. The data models for similar business areas are analogous to one another. Therefore, it is reasonable to reuse the already-developed data models if the target business area is similar to what we have already analyzed before. In this research, we develop a case-based reasoning system for data model reuse, which we shall call CB-DM Reuser (Case-Based Data Model Reuser). CB-DM Reuse consists of four subsystems : the graphic user interface to interact with end user, the data model management system to build new data model, the case base to store the past data models, and the knowledge base to store data modeling and data model reusing knowledge. We present the functionality of CB-DM Reuser and show how it works on real-life a, pp.ication.

  • PDF

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Chromosome Analysis System based on Knowledge Base for CAI (지식 베이스를 이용한 교육용 염색체 분석 시스템)

  • 박정선;신용원
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.215-222
    • /
    • 2001
  • The task for chromosome analysis and diagnosis by experienced cytogenetists are being concerned as repetitive, time consuming job and expensive. FOr that reason, chromosome analysis system based on knowledge base for CAI had been established to be able to analyze chromosomes and obtain necessary advises from the knowledge base instead of human experts. That s to say, knowledge base by IF THEN production rule was implemented to a knowledge domain with normal and abnormal chromosomes, and then the inference results by knowledge base could enter the inference data into the database. Experimental data were composed of normal chromosome of 2,736 patients'cases and abnormal chromosomes of 259 patients'cases that have been obtained from GTG-banding metaphase peripheral blood and amniotic fluid samples. The complete system provides variously morphological information by analysis of normal or abnormal chromosomes and it also has the advantage of being able to consult with user on chromosome analysis and diagnosis.

  • PDF

Data Fusion Algorithm based on Inference for Anomaly Detection in the Next-Generation Intrusion Detection (차세대 침입탐지에서 이상탐지를 위한 추론 기반 데이터 융합 알고리즘)

  • Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.233-238
    • /
    • 2016
  • In this paper, we propose the algorithms of processing the uncertainty data using data fusion for the next generation intrusion detection. In the next generation intrusion detection, a lot of data are collected by many of network sensors to discover knowledge from generating information in cyber space. It is necessary the data fusion process to extract knowledge from collected sensors data. In this paper, we have proposed method to represent the uncertainty data, by classifying where is a confidence interval in interval of uncertainty data through feature analysis of different data using inference method with Dempster-Shafer Evidence Theory. In this paper, we have implemented a detection experiment that is classified by the confidence interval using IRIS plant Data Set for anomaly detection of uncertainty data. As a result, we found that it is possible to classify data by confidence interval.

Pattern Analysis of Organizational Leader Using Fuzzy TAM Network (퍼지TAM 네트워크를 이용한 조직리더의 패턴분석)

  • Park, Soo-Jeom;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.238-243
    • /
    • 2007
  • The TAM(Topographic Attentive Mapping) network neural network model is an especially effective one for pattern analysis. It is composed of of Input layer, category layer, and output layer. Fuzzy rule, lot input and output data are acquired from it. The TAM network with three pruning rules for reducing links and nodes at the layer is called fuzzy TAM network. In this paper, we apply fuzzy TAM network to pattern analysis of leadership type for organizational leader and show its usefulness. Here, criteria of input layer and target value of output layer are the value and leadership related personality type variables of the Egogram and Enneagram, respectively.

A Study on Pattern Analysis of Sustainability Management Using Fuzzy ID3 (퍼지 ID3를 이용한 지속가능경영의 패턴분석에 관한 연구)

  • Kim, Hong-Jin;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.700-705
    • /
    • 2008
  • In this paper, a model to evaluate the sustainability management for small and middle enterprises was suggested. Also, the if-then rules and its decision tree for pattern analysis which is obtained by fuzzy ID3 from the data of sustainability management were shown. The suggested model can be used for the evaluation tool of competition increasement of enterprises. If the enterprise can recognize that the evaluation rule can be taken advantage of the sustainability management pattern analysis using fuzzy ID3, it is expected that they can use the rule effectively for self evaluation.

Pattern Analysis of Core Competency Model for Subcontractors of Construction Companies Using Fuzzy TAM Network (퍼지 TAM 네트워크를 이용한 건설협력업체 핵심역량모델의 패턴분석)

  • Kim, Sung-Eun;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.86-93
    • /
    • 2006
  • The TAM(Topographic Attentive Mapping) network based on a biologically-motivated neural network model is an especially effective one for pattern analysis. It is composed of of input layer, category layer, and output layer. Fuzzy rule, for input and output data are acquired from it. The TAM network with three pruning rules for reducing links and nodes at the layer is called fuzzy TAM network. In this paper, we apply fuzzy TAM network to pattern analysis of core competency model for subcontractors of construction companies and show its usefulness.

Empirical Sentiment Classification Using Psychological Emotions and Social Web Data (심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류)

  • Chang, Moon-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • The studies of opinion mining or sentiment analysis have been the focus with social web proliferation. Sentiment analysis requires sentiment resources to decide its polarity. In the existing sentiment analysis, they have been built resources designed with intensity of sentiment polarity and decided polarity of opinion using the ones. In this paper, I will present sentiment categories for not only polarity of opinion but also the basis of positive/negative opinion. I will define psychological emotions to primary sentiments for the reasonable classification. And I will extract the informations of sentiment from social web texts for the actual distribution of sentiments in social web. Re-classifying primary sentiments based on extracted sentiment information, I will organize sentiment categories for the social web. In this paper, I will present 23 categories of sentiment by using proposed method.