• Title/Summary/Keyword: Intelligent Container

Search Result 107, Processing Time 0.026 seconds

SD 기법을 활용한 컨테이너 터미널 경쟁력 강화 모델 개발

  • Choe, Hyeong-Rim;Park, Byeong-Ju;Yu, Dong-Ho;Gang, Mu-Hong;Yun, Su-Jin
    • Proceedings of the Korean System Dynamics Society
    • /
    • 2006.11a
    • /
    • pp.93-105
    • /
    • 2006
  • A container terminal should concentrate on efficient terminal operation in the long view and analyze an effect through introduction of hi-technology, automated equipments and intelligent information system, when they want to improve their reliability and competitive power in intense global competition. To do this, first this study finds out factors which affect competitive power of a container terminal, and relation between them. And then we used System Dynamics method to analyze an effect according to a value fluctuation of the factors in the long term.

  • PDF

Sway Control of Container Cranes as an Axially Moving Nonlinear String

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2474-2479
    • /
    • 2005
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving nonlinear string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

Feedback Linearization Control of Container Cranes (컨테이너 크레인의 되먹임 선형화제어)

  • PARK HAHN;CHWA DONG-KYUNG;HONG KEUM-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.58-64
    • /
    • 2005
  • In this paper, a feedback linearizing anti-sway control law, using a 2-D model for container cranes, is investigated. The equations of motion are first derived from Lagrange's equation. Then, by substituting the sway dynamics into the trolley dynamics, a reduction of variables from three (trolley, hoist, sway) to two (trolley, hoist) is pursued. The anti-sway control law is designed based on the Lyapunov stability theorem. The proposed control law guarantees the uniform asymptotic stability of the closed-loop system. The simulation results of the derived control law, using MATLAB/Simulink, are compared with those of the sliding mode control law, noted in previous literature. Also, experimental results using a 3-D pilot crane are provided.

Development of Integrated Planning System for Efficient Container Terminal Operation (효율적인 컨테이너 터미널 운영 계획 작성을 위한 통합 시스템 개발)

  • 신재영;이채민
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.71-89
    • /
    • 2002
  • In this paper, an integrated planning system is introduced for the efficient operation of container terminal. It consists of discharging and loading planning, yard planning, and berth scheduling subsystem. This interface of this system is considered for user's convenience, and the rule-based system is suggested and developed in order to make planning with automatic procedures, warning functions for errors.

  • PDF

Adaptive Wireless Sensor Network Technology for Ubiquitous Container Logistics Development

  • Chai, Bee-Lie;Yeoh, Chee-Min;Kwon, Tae-Hong;Lee, Ki-Won;Lim, Hyotaek;Kwark, Gwang-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.317-320
    • /
    • 2009
  • At the present day, the use of containers crisscrossing seven seas and intercontinental transport has significantly increased and bringing the change on the shape of the world economy which we cannot be neglected. Additionally, with the recent technological advances in wireless sensor network (WSN) technologies, has providing an economically feasible monitoring solution to diverse application that allow us to envision the intelligent containers represent the next evolutionary development step in order to increase the efficiency, productivity, utilities, security and safe of containerized cargo shipping. This paper we present a comprehensive containerized cargo monitoring system which has adaptively embedded WSN technology into cargo logistic technology. We share the basic requirement for an autonomous logistic network that could provide optimum performance and a suite of algorithms for self-organization and bi-directional communication of a scalable large number of sensor node apply on container regardless inland and maritime transportation.

  • PDF

A design for independent operation system for ATC in automated container terminal (자동화 컨테이너 터미널의 운영시스템을 위한 ATC 독립성 유지 시스템 설계)

  • Park, Jong-Won;Shin, Jae-Young;Kim, Woong-Sub;Kim, Yong-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.57-58
    • /
    • 2010
  • This aims to independent operation system for ATC which works for a yard in a container terminal automatically. Many intelligent algorithms have been developed and studied for TOS - Terminal Operation System - in existing container terminals. So, TOS has been getting overloaded for development, maintenance, and repair. Moreover, if new equipment are introduced for container terminal, the TOS for container terminal would be renewed whole system. Despite of its necessity, studies have been introduced insufficiently. As a result, this paper represents the concept of independent which connects between TOS and equipments so that it can perform planning, indicating, monitoring, control and etc.

  • PDF

Research on Artificial Intelligence Based Shipping Container Loading Safety Management System (인공지능 기반 컨테이너 적재 안전관리 시스템 연구)

  • Kim Sang Woo;Oh Se Yeong;Seo Yong Uk;Yeon Jeong Hum;Cho Hee Jeong;Youn Joosang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.9
    • /
    • pp.273-282
    • /
    • 2023
  • Recently, various technologies such as logistics automation and port operations automation with ICT technology are being developed to build smart ports. However, there is a lack of technology development for port safety and safety accident prevention. This paper proposes an AI-based shipping container loading safety management system for the prevention of safety accidents at container loading fields in ports. The system consists of an AI-based shipping container safety accident risk classification and storage function and a real-time safety accident monitoring function. The system monitors the accident risk at the site in real-time and can prevent container collapse accidents. The proposed system is developed as a prototype, and the system is ecaluated by direct application in a port.

An Experimental Study on the Accurate Tracking Control of a Transfer Crane Based on the 2DOF Servosystem Design Approach (트랜스퍼 크레인의 고정도 주행제어에 관한 연구 : 2자유도 서보계 설계법을 이용한 제어계 설계 및 실험적 연구)

  • Kim, Young-Bok;Lee, Kwon-Soon;Han, Seong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.57-62
    • /
    • 2006
  • The most important thing in acontainer terminal is to handle the cargo effectively in the limited time available. To achieve this objective, many strategies have been introduced and applied. To create an automated container terminal, it is necessary for the cargo handling equipment to be equipped with more intelligent control systems. From the middle of the 1990's, automated rail-mounted gantry cranes (RMGC) and rubber-tired gantry cranes (RTG) have been widely used to handle containers in yards. Recently, many pieces of equipment, like CCD cameras and sensors, have beenmounted in these cranes to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes, which allow for more effective cargo handling in yards. For this purpose, the modeling, tracking control, anti-sway system design, skew motion suppressing, and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modeling and a new tracking control approach are discussed, and an experimental study is performed based on a two-degree-of-freedom (2DOF) servosystem design.

SD-MTD: Software-Defined Moving-Target Defense for Cloud-System Obfuscation

  • Kang, Ki-Wan;Seo, Jung Taek;Baek, Sung Hoon;Kim, Chul Woo;Park, Ki-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.1063-1075
    • /
    • 2022
  • In recent years, container techniques have been broadly applied to cloud computing systems to maximize their efficiency, flexibility, and economic feasibility. Concurrently, studies have also been conducted to ensure the security of cloud computing. Among these studies, moving-target defense techniques using the high agility and flexibility of cloud-computing systems are gaining attention. Moving-target defense (MTD) is a technique that prevents various security threats in advance by proactively changing the main attributes of the protected target to confuse the attacker. However, an analysis of existing MTD techniques revealed that, although they are capable of deceiving attackers, MTD techniques have practical limitations when applied to an actual cloud-computing system. These limitations include resource wastage, management complexity caused by additional function implementation and system introduction, and a potential increase in attack complexity. Accordingly, this paper proposes a software-defined MTD system that can flexibly apply and manage existing and future MTD techniques. The proposed software-defined MTD system is designed to correctly define a valid mutation range and cycle for each moving-target technique and monitor system-resource status in a software-defined manner. Consequently, the proposed method can flexibly reflect the requirements of each MTD technique without any additional hardware by using a software-defined approach. Moreover, the increased attack complexity can be resolved by applying multiple MTD techniques.

LCL Cargo Loading Algorithm Considering Cargo Characteristics and Load Space (화물의 특성 및 적재 공간을 고려한 LCL 화물 적재 알고리즘)

  • Daesan Park;Sangmin Jo;Dongyun Park;Yongjae Lee;Dohee Kim;Hyerim Bae
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.375-393
    • /
    • 2023
  • The demand for Less than Container Load (LCL) has been on the rise due to the growing need for various small-scale production items and the expansion of the e-commerce market. Consequently, more companies in the International Freight Forwarder are now handling LCL. Given the variety in cargo sizes and the diverse interests of stakeholders, there's a growing need for a container loading algorithm that optimizes space efficiency. However, due to the nature of the current situation in which a cargo loading plan is established in advance and delivered to the Container Freight Station (CFS), there is a limitation that variables that can be identified at industrial sites cannot be reflected in the loading plan. Therefore, this study proposes a container loading methodology that makes it easy to modify the loading plan at industrial sites. By allowing the characteristics of cargo and the status of the container to be considered, the requirements of the industrial site were reflected, and the three-dimensional space was manipulated into a two-dimensional planar layer to establish a loading plan to reduce time complexity. Through the methodology presented in this study, it is possible to increase the consistency of the quality of the container loading methodology and contribute to the automation of the loading plan.