DOI QR코드

DOI QR Code

Research on Artificial Intelligence Based Shipping Container Loading Safety Management System

인공지능 기반 컨테이너 적재 안전관리 시스템 연구

  • Received : 2023.06.15
  • Accepted : 2023.07.03
  • Published : 2023.09.30

Abstract

Recently, various technologies such as logistics automation and port operations automation with ICT technology are being developed to build smart ports. However, there is a lack of technology development for port safety and safety accident prevention. This paper proposes an AI-based shipping container loading safety management system for the prevention of safety accidents at container loading fields in ports. The system consists of an AI-based shipping container safety accident risk classification and storage function and a real-time safety accident monitoring function. The system monitors the accident risk at the site in real-time and can prevent container collapse accidents. The proposed system is developed as a prototype, and the system is ecaluated by direct application in a port.

최근 스마트항만을 구축하기 위해 ICT 기술이 적용된 물류 자동화, 항만 운영 자동화 등 다양한 기술이 개발 중이다. 하지만 항만 안전과 안전사고를 예방하기 위한 기술 개발은 부족한 상황이다. 이에 본 논문에서는 항만 내 컨테이너 적재 공간에서 발생할 수 있는 안전사고를 예방하기 위한 인공지능 기반 컨테이너 적재 안전관리 시스템을 제안한다. 이 시스템은 인공지능 기반 컨테이너 안전사고 위험도 분류 및 저장 기능과 실시간 안전사고 모니터링 기능으로 구성되어 있다. 이 시스템은 실시간으로 현장의 사고 위험도를 모니터링하며 이를 통해 컨테이너 붕괴사고를 예방할 수 있다. 제안된 시스템은 프로토타입으로 개발되어 직접 항만에 적용하여 시스템을 평가하였다.

Keywords

Acknowledgement

이 논문은 연구개발특구진흥재단의 지역의 미래를 여는 과학기술프로젝트 사업 지능형 무인 자동화 스마트물류 시스템 구축 과제(2020-DD-UP-0281-03-210)에 의해 연구 되었음.

References

  1. Serious Accident Punishment Act (Act No. 17907 of 26. Jan. 2021).
  2. Special Port Safety Act (Act No. 18369 of 3. Aug. 2011).
  3. Ministry of Oceans and Fisheries, "Shipping Container Safety Management Plan 2022," 2022.
  4. H. J. Kang and S. J. Han, "A study on the establishment of a container terminal safety management plan based on risk assessment," Journal of the Society of Disaster Information, Vol.18, No.4, pp.873-882, 2022. https://doi.org/10.15683/KOSDI.2022.12.31.873
  5. K. Mokhtari, "Advanced risk management in offshore terminals and marine ports," Doctoral thesis, Liverpool John Moores University, 2011.
  6. C. Wan, "Modelling and systematic assessment of maritime container supply chain risks," Doctoral thesis, Liverpool John Moores University, 2018.
  7. Y. L. Yang, J. F. Ding, C. C. Chiu, W. H. Shyu, W. J. Tseng, and M. T. Chou, "Core risk factors influencing safe handling operations for container terminals at Kaohsiung port," Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, Vol.230, No.2, pp.444-453, 2014. https://doi.org/10.1177/1475090214563859
  8. P. L. Pallis, "Port risk management in container terminals," Transportation Research Procedia, Vol.25, pp.4411-4421, 2017. https://doi.org/10.1016/j.trpro.2017.05.337
  9. M. H. Chang and D. Y. Kang, "Factors affecting the information security awareness and perceived information security risk of employees of port companies," Journal of Korean Navigation and Port Reserch, Vol.36, No.3 pp. 261-271, 2012. https://doi.org/10.5394/KINPR.2012.36.3.261
  10. D. H. Yoon, Y. S. Choi, and S. G. Kim, "An assesment & analysis of risk based on accident category for container terminals," Journal of Shipping and Logistics, Vol.30, No. 4, pp.843-858, 2014. https://doi.org/10.37059/TJOSAL.2014.30.4.843
  11. ABS-A guide for risk evaluations for the classification of marine-related facilities[Internet], http://www.eagle.org/eagleExternalPortalWEB/
  12. T. Yang and C. C. Hung, "Multiple-attribute decision making methods for plant layout design problem," Robotics and Computer-integrated manufacturing, Vol.23, No.1, pp.126-137, 2007. https://doi.org/10.1016/j.rcim.2005.12.002
  13. M. H. Ha and Z. Yang, "Modelling interdependency among attributes in MCDM: Its application in port performance measurement," Multi-Criteria Decision Making in Maritime Studies and Logistics, pp.323-354, 2017.
  14. T. L. Saaty, "The analytic hierarchy process : Planning priority setting resource allocation," McGraw-Hill International Book, 1980.
  15. T. L. Saaty, "Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process," RACSAM - Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, Vol.102, No.2, pp.251-318, 2008. https://doi.org/10.1007/BF03191825
  16. R. R. Yager, "On ordered weighted averaging aggregation operators in multicriteria decisionmaking," IEEE Transactions on Systems, Man, and Cybernetics, Vol.18, No.1, pp.183-190, 1988. https://doi.org/10.1109/21.87068
  17. H. J. Lee and M. H. Ha, "Novel framework for evaluating container port risks - The case of Incheon Port -," Korea Logistics Review, Vol.32, No.4, pp.79-91, 2022. https://doi.org/10.17825/klr.2022.32.4.79
  18. Korea Occupational Safety & Health Agency, "Guidance on qualitative bow-tie risk assessment techniques," KOSHA GUIDE, 2011.
  19. S. H. Park, J. W. You, and Y. S. Kim, "A study on the improvement of safety management on container terminal -Using hazard identification and bow-tie method-," Journal of Korean Navigation and Port Reserch, Vol.43, No.1, pp.57-63, 2019.
  20. Official Blog of Ulsan Port Authority[Internet], https://m.blog.naver.com/PostList.naver?blogId=ulsan-port.
  21. J. Zhao et al., "Improved vision-based vehicle detection and classification by optimized YOLOv4," IEEE Access, Vol.10, pp.8590-8603, 2022. https://doi.org/10.1109/ACCESS.2022.3143365
  22. J. Fan, J. Lee, I. Jung, and Y. Lee, "Improvement of object detection based on faster R-CNN and YOLO," 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp.1-4, 2021.
  23. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.39, No.6, pp.1137-1149, 2017. https://doi.org/10.1109/TPAMI.2016.2577031
  24. Q. Guo, L. Liu, W. Xu, Y. Gong, X. Zhang, and W. Jing, "An improved faster R-CNN for high-speed railway dropper detection," IEEE Access, Vol.8, pp.105622-105633, 2020. https://doi.org/10.1109/ACCESS.2020.3000506
  25. Y.-H. Lee and Y. Kim, "Comparison of CNN and YOLO for object detection," Journal of the Semiconductor & Display Technology, Vol.19, No.1, pp.85-92, 2020.
  26. J. Redmon and A. Farhadi, "Yolov3: An incremental improvement," arXiv preprint arXiv:1804.02767, 2018.
  27. Z. Cong and X. Li, "Track obstacle detection algorithm based on YOLOv3," 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp.12-17, 2020.
  28. A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," arXiv preprint arXiv:2004.10934, 2020.
  29. T. Yang and C. Tong, "Small traffic sign detector in real-time based on improved YOLO-v4," 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pp.1318-1324, 2021.
  30. J. H. Yeon et al., "Shipping container load state and accident risk detection techniques based deep learning," KIPS Transactions on Computer and Communication Systems (KTCCS), Vol.11, No.11, pp.411-418, 2022.