• Title/Summary/Keyword: Intelligence density

Search Result 79, Processing Time 0.034 seconds

A Store Recommendation Procedure in Ubiquitous Market (U-마켓에서의 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Kim, Min-Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.45-63
    • /
    • 2007
  • Recently as ubiquitous environment comes to the fore, information density is raised and enterprise is being able to capture and utilize customer-related information at the same time when the customer purchases a product. In this environment, a need for the recommender systems which can deliver proper information to the customer at the right time and right situation is highly increased. Therefore, the research on recommender systems continued actively in a variety of fields. Until now, most of recommender systems deal with item recommendation. However, in the market in ubiquitous environment where the same item can be purchased at several stores, it is highly desirable to recommend store to the customer based on his/her contextual situation and preference such as store location, store atmosphere, product quality and price, etc. In this line of research, we proposed the store recommender system using customer's contextual situation and preference in the market in ubiquitous environment. This system is based on collaborative filtering and Apriori algorithms. It will be able to provide customer-centric service to the customer, enhance shopping experiences and contribute in revitalizing market in the long term.

  • PDF

Analysis of Effect of Surface Temperature Rise Rate of 72.5 Ah NCM Pouch-type Lithium-ion Battery on Thermal Runaway Trigger Time (72.5 Ah NCM계 파우치형 리튬이온배터리의 표면온도 상승률이 열폭주 발생시간에 미치는 영향 분석)

  • Lee, Heung-Su;Hong, Sung-Ho;Lee, Joon-Hyuk;Park, Moon Woo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • With the convergence of the information and communication technologies, a new age of technological civilization has arrived. This is the age of intelligent revolution, known as the 4th industrial revolution. The 4th industrial revolution is based on technological innovations, such as robots, big data analysis, artificial intelligence, and unmanned transportation facilities. This revolution would interconnect all the people, things, and economy, and hence will lead to the expansion of the industry. A high-density, high-capacity energy technology is required to maintain this interconnection. As a next-generation energy source, lithium-ion batteries are in the spotlight today. However, lithium-ion batteries can cause thermal runaway and fire because of electrical, thermal, and mechanical abuse. In this study, thermal runaway was induced in 72.5 Ah NCM pouch-type lithium-ion batteries because of thermal abuse. The surface of the pouch-type lithium-ion batteries was heated by the hot plate heating method, and the effect of the rate of increase in the surface temperature on the thermal runaway trigger time was analyzed using Minitab 19, a statistical analysis program. The correlation analysis results confirmed that there existed a strong negative relationship between each variable, while the regression analysis demonstrated that the thermal runaway trigger time of lithium-ion batteries can be predicted from the rate of increase in their surface temperature.

Dynamic Pricing Based on Reinforcement Learning Reflecting the Relationship between Driver and Passenger Using Matching Matrix (Matching Matrix를 사용하여 운전자와 승객의 관계를 반영한 강화학습 기반 유동적인 가격 책정 체계)

  • Park, Jun Hyung;Lee, Chan Jae;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.118-133
    • /
    • 2020
  • Research interest in the Mobility-as-a-Service (MaaS) concept for enhancing users' mobility experience is increasing. In particular, dynamic pricing techniques based on reinforcement learning have emerged since adjusting prices based on the demand is expected to help mobility services, such as taxi and car-sharing services, to gain more profit. This paper provides a simulation framework that considers more practical factors, such as demand density per location, preferred prices, the distance between users and drivers, and distance to the destination that critically affect the probability of matching between the users and the mobility service providers (e.g., drivers). The aforementioned new practical features are reflected on a data structure referred to as the Matching Matrix. Using an efficient algorithm of computing the probability of matching between the users and drivers and given a set of precisely identified high-demand locations using HDBSCAN, this study developed a better reward function that can gear the reinforcement learning process towards finding more realistic dynamic pricing policies.

Characterization and Classification of Pores in Metal 3D Printing Materials with X-ray Tomography and Machine Learning (X-ray tomography 분석과 기계 학습을 활용한 금속 3D 프린팅 소재 내의 기공 형태 분류)

  • Kim, Eun-Ah;Kwon, Se-Hun;Yang, Dong-Yeol;Yu, Ji-Hun;Kim, Kwon-Ill;Lee, Hak-Sung
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.208-215
    • /
    • 2021
  • Metal three-dimensional (3D) printing is an important emerging processing method in powder metallurgy. There are many successful applications of additive manufacturing. However, processing parameters such as laser power and scan speed must be manually optimized despite the development of artificial intelligence. Automatic calibration using information in an additive manufacturing database is desirable. In this study, 15 commercial pure titanium samples are processed under different conditions, and the 3D pore structures are characterized by X-ray tomography. These samples are easily classified into three categories, unmelted, well melted, or overmelted, depending on the laser energy density. Using more than 10,000 projected images for each category, convolutional neural networks are applied, and almost perfect classification of these samples is obtained. This result demonstrates that machine learning methods based on X-ray tomography can be helpful to automatically identify more suitable processing parameters.

Wettability and Intermetallic Compounds of Sn-Ag-Cu-based Solder Pastes with Addition of Nano-additives (나노 첨가제에 따른 Sn-Ag-Cu계 솔더페이스트의 젖음성 및 금속간화합물)

  • Seo, Seong Min;Sri Harini, Rajendran;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.35-41
    • /
    • 2022
  • In the era of Fifth-Generation (5G), technology requirements such as Artificial Intelligence (AI), Cloud computing, automatic vehicles, and smart manufacturing are increasing. For high efficiency of electronic devices, research on high-intensity circuits and packaging for miniaturized electronic components is important. A solder paste which consists of small solder powders is one of common solder for high density packaging, whereas an electroplated solder has limitation of uniformity of bump composition. Researches are underway to improve wettability through the addition of nanoparticles into a solder paste or the surface finish of a substrate, and to suppress the formation of IMC growth at the metal pad interface. This paper describes the principles of improving the wettability of solder paste and suppressing interfacial IMC growth by addition of nanoparticles.

Vacant House Prediction and Important Features Exploration through Artificial Intelligence: In Case of Gunsan (인공지능 기반 빈집 추정 및 주요 특성 분석)

  • Lim, Gyoo Gun;Noh, Jong Hwa;Lee, Hyun Tae;Ahn, Jae Ik
    • Journal of Information Technology Services
    • /
    • v.21 no.3
    • /
    • pp.63-72
    • /
    • 2022
  • The extinction crisis of local cities, caused by a population density increase phenomenon in capital regions, directly causes the increase of vacant houses in local cities. According to population and housing census, Gunsan-si has continuously shown increasing trend of vacant houses during 2015 to 2019. In particular, since Gunsan-si is the city which suffers from doughnut effect and industrial decline, problems regrading to vacant house seems to exacerbate. This study aims to provide a foundation of a system which can predict and deal with the building that has high risk of becoming vacant house through implementing a data driven vacant house prediction machine learning model. Methodologically, this study analyzes three types of machine learning model by differing the data components. First model is trained based on building register, individual declared land value, house price and socioeconomic data and second model is trained with the same data as first model but with additional POI(Point of Interest) data. Finally, third model is trained with same data as the second model but with excluding water usage and electricity usage data. As a result, second model shows the best performance based on F1-score. Random Forest, Gradient Boosting Machine, XGBoost and LightGBM which are tree ensemble series, show the best performance as a whole. Additionally, the complexity of the model can be reduced through eliminating independent variables that have correlation coefficient between the variables and vacant house status lower than the 0.1 based on absolute value. Finally, this study suggests XGBoost and LightGBM based machine learning model, which can handle missing values, as final vacant house prediction model.

Design and Implementation of Evacuation Simulation of Indoor Environment Fire (건물 내에서 화재시의 대피 시뮬레이션 설계 및 구현)

  • Jang, Byeong-Ok
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • With recent development of computer hardware and 3D graphic technique, a lot of people have concern for something to express as the 3D graphic that look the real environment. Because the request of users have increased, the 3D simulation is developed and popularized in the many field. In this paper, we design and implement the simulation system that humans evacuate a building fires using the 3D graphic techniques. In this paper, we use the A* algorithm to humans have the artificial intelligence at evacuating a building fires, calculate the evacuation speed of each human considering temperature damage and smoke damage. In this paper, we applied the real building to demonstrate the effect of proposed evacuation simulation. Experimental results showed that the evacuation speed is affected by the temperature condition and the smoke density.

Modeling of a Dynamic Membrane Filtration Process Using ANN and SVM to Predict the Permeate Flux (ANN 및 SVM을 사용하여 투과 유량을 예측하는 동적 막 여과 공정 모델링)

  • Soufyane Ladeg;Mohamed Moussaoui;Maamar Laidi;Nadji Moulai-Mostefa
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.34-45
    • /
    • 2023
  • Two computational intelligence techniques namely artificial neural networks (ANN) and support vector machine (SVM) are employed to model the permeate flux based on seven input variables including time, transmembrane pressure, rotating velocity, the pore diameter of the membrane, dynamic viscosity, concentration and density of the feed fluid. The best-fit model was selected through the trial-error method and the two statistical parameters including the coefficient of determination (R2) and the average absolute relative deviation (AARD) between the experimental and predicted data. The obtained results reveal that the optimized ANN model can predict the permeate flux with R2 = 0.999 and AARD% = 2.245 versus the SVM model with R2 = 0.996 and AARD% = 4.09. Thus, the ANN model is found to predict the permeate flux with high accuracy in comparison to the SVM approach.

Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness (몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석)

  • Seung Jun Moon;Jae Kyung Kim;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF

Artificial Neural Network-based Thermal Environment Prediction Model for Energy Saving of Data Center Cooling Systems (데이터센터 냉각 시스템의 에너지 절약을 위한 인공신경망 기반 열환경 예측 모델)

  • Chae-Young Lim;Chae-Eun Yeo;Seong-Yool Ahn;Sang-Hyun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.883-888
    • /
    • 2023
  • Since data centers are places that provide IT services 24 hours a day, 365 days a year, data center power consumption is expected to increase to approximately 10% by 2030, and the introduction of high-density IT equipment will gradually increase. In order to ensure the stable operation of IT equipment, various types of research are required to conserve energy in cooling and improve energy management. This study proposes the following process for energy saving in data centers. We conducted CFD modeling of the data center, proposed an artificial intelligence-based thermal environment prediction model, compared actual measured data, the predicted model, and the CFD results, and finally evaluated the data center's thermal management performance. It can be seen that the predicted values of RCI, RTI, and PUE are also similar according to the normalization used in the normalization method. Therefore, it is judged that the algorithm proposed in this study can be applied and provided as a thermal environment prediction model applied to data centers.