Acknowledgement
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT)(No.RS-2023-00233745, Development and performance evaluation of data center cooling system using liquefied gas cooling heat)
References
- Research and Markets, "Data Center Colocation Market - Growth, Trends, and Forecast (2020-2025)", https://www.businesswire.com/news/home/20200525005100/en/Global-Data-Center-Colocation-Market-2020-2025, 2020.11.13.
- A.S.G. Andrae & T. Edler, On Global Electricity Usage of Communication Technology: Trends to 2030, challenges, 6, pp.117-157, 2015 https://doi.org/10.3390/challe6010117
- Whitehead, B. & Andrews, D., Shah, A., & Maidment, G. Assessing the Environ mental impact of data centres. Part 1: Background, energy use and metrics, Building and Environment, Vol. 82, 151-159. 2014 https://doi.org/10.1016/j.buildenv.2014.08.021
- Y.J. Choi et al., Development of Supply Air Temperature Prediction Model for Optimal Control Algorithm of Containment Data Center, KIEAE Journal 20(5), pp.159-164, 2020. https://doi.org/10.12813/kieae.2020.20.5.159
- J. Nathan Kutz, Data-Driven Modelling & Scientific Computation : Methods for Complex Systems & Big Data, OXFORD, 2013
- C.Y. Lim, C.E Yeo, S.Y. Ahn, M.O Lee & H.J Sung "Design and Performance Evaluation of Digital Twin Prototype Based on Biomass Plant" The Journal of the Convergence on Culture Technology (JCCT) 9, no.5 935-940, 2023
- C.Y. Lim, C.E Yeo, W.J. Cho, J.H Gu & S.H. Lee "Design and Implementation of IEC 62541 based Industry Internet of Things Simulator for Meta-Factory" The Journal of the Convergence on Culture Technology (JCCT) 9, no.3 789-795, 2023
- J. D. Yang & X. C. W. Liu, Self-tuning PID-type Fuzzy Adaptive Control for CRAC in Datacenters, International Conference on Computer and Computing Technologies in Agriculture, 2014.
- Y.J. Kim & C.S. Park, Gaussian Process Model for Real-Time Optimal Control of Chiller System, Journal of the Architectural Institute of Korea, vol.30, no.7, pp.211-220, 2014. DOI : 10.5659/JAIK_PD.2014.30.7.211
- Aurellen Geron & Hands-On Machine Learning with Scikit-Learn & TensorFlow, Oreilly
- J.A. Suykens & J. Vandewalle, Least squares support vector machine classifiers, Neural Processing letters, 9(3), pp.293-300, 1999. https://doi.org/10.1023/A:1018628609742
- M. Martin, On-line support vector machine regression, In European Conference on Machine Learning, Springer, Berlin, Heidelberg, 2430, pp.282-294, 2002.
- Zhao, B., Lu, H., Chen, S., Liu, J & Wu, D., "Convolutional neural networks for time series classification", Journal of Systems Engineering and Electronics, 28(1), 162-169, 2017 https://doi.org/10.21629/JSEE.2017.01.18
- Kim, T.Y., & Cho, S.B., "Predicting residential energy consumption using CNN-LSTM neural networks", Energy, 182, 72-81, 2019. https://doi.org/10.1016/j.energy.2019.05.230