Acknowledgement
This work was supported by the Laboratory of Materials and Environment (LME, University of Medea, Algeria).
References
- L. Ding and M. Y. Jaffrin, "Benefits of high shear rate dynamic nanofiltration and reverse osmosis: A review", Sep. Sci. Technol., 49, 1953 (2014).
- L. Ding, O. Al-Akoum, A. Abraham, and M. Y. Jaffrin, "Milk protein concentration by ultrafiltration with rotating disk modules", Desalination., 144, 307-311 (2002). https://doi.org/10.1016/S0011-9164(02)00334-X
- S. Mondal and S. De, "A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation", Sep. Purif. Technol., 75, 222 (2010).
- G. Belfort, H. R. Davis, and L. A. Zydney, "The behavior of suspensions and macromolecular solutions in crossflow microfiltration", J. Membr. Sci., 96, 1 (1994).
- M. Y. Jaffrin, "Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating membranes and vibrating systems", J. Membr. Sci., 324, 7 (2008).
- L. Ding, M. Y. Jaffrin, and J. Luo, "Dynamic filtration with rotating disks, and rotating or vibrating membranes", Progress in Filtration and Separation, pp. 27, Academic Press (2015).
- A. Brou, L. Ding, P. Boulnois, and M. Y. Jaffrin, "Dynamic microfiltration of yeast suspensions using rotating disks equipped with vanes", J. Membr. Sci., 197, 269 (2002).
- R. Bouzerar, L. Ding, and M. Y. Jaffrin, "Local permeate flux-shear-pressure relationships in a rotating disk microfiltration module: Implications for global performance", J. Membr. Sci., 170, 127 (2000).
- R. Bouzerar, M. Y. Jaffrin, A. Lefevre, and P. Paullier, "Concentration of ferric hydroxide suspensions in saline medium by dynamic cross-flow filtration", J. Membr. Sci., 165, 111 (2000).
- Z. Zhu, J. Luo, L. Ding, O. Bals, M. Y. Jaffrin, and E. Vorobiev, "Chicory juice clarification by membrane filtration using rotating disk module", Food Eng., 115, 264 (2013).
- J. Luo, Z. Zhu, L. Ding, O. Bals, Y. Yinhua, M. J. Jaffrin, and E. Vorobiev, "Flux behavior in clarification of chicory juice by high-shear membrane filtration: evidence for threshold flux", J. Membr. Sci., 435, 120 (2013).
- S. Park, S. S Baek, J. Pyo, Y. Pachepsky, J. Park, and K. Cho, "Deep neural networks for modeling fouling growth and flux decline during NF/RO membrane filtration", J. Membr. Sci., 587, 117 (2019).
- S. Ladeg, N. Moulai-Mostefa, A. Ould-Dris, and L. Ding, "Modeling of surface fouling on the surface of a rotating disk membrane using CFD and numerical study", Desalin. Water Treat., 190, 52 (2020).
- Z. Zhu, S. Ladeg, L. Ding, O. Bals, N. MoulaiMostefa, M. Y. Jaffrin, and E. Vorobiev, "Study of rotating disk assisted dead-end filtration of chicory juice and its performance optimization", Ind. Crops Prod., 53, 154 (2014).
- Z. Yusuf, N. A. Wahab, and S. Sudin, "Soft computing techniques in modelling of membrane filtration system: A review", Desalin. Water Treat., 161, 144 (2019).
- R. Soleimani, N. Alavi, B. Mirza, and A. Salahi, "Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm", Chem. Eng. Res. Des., 91, 883 (2013).
- J. Jawad, A. H. Hawari, and S. Zaidi, "Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux", Desalination., 484, 114427 (2020).
- G. B. Sahoo and C. Ray, "Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms", J. Membr. Sci., 283, 147 (2006).
- M. Bagheri, A. Akbari, and S. A. Mirbagheri, "Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: A critical review", Process Saf. Environ. Prot., 123, 229 (2019).
- Q. F. Liu, S. H. Kim, and S. Lee, "Prediction of microfiltration membrane fouling using artificial neural network models", Sep. Purif. Technol., 70, 96 (2009).
- L. Auria and R. A. Moro, "Support vector machines (SVM) as a technique for solvency analysis", SSRN, DIW Berlin., 811 (2008).
- C. Li, and Y. Tao, "Application of support vector machine with simulated annealing algorithm in MBR membrane pollution prediction", IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), pp. 211, London, UK (2017).
- H. Adib, F. Sharifi, N. Mehranbod, N. M. Kazerooni, and M. Koolivand, "Support Vector Machine based modeling of an industrial natural gas sweetening plant", J. Nat. Gas Sci. Eng., 14, 121 (2013).
- K. Gao, X. Xi, Z. Wang, Y. Ma, S. Chen, X. Ye, and Y. Li, "Use of support vector machine model to predict membrane permeate flux", Desalin. Water Treat., 57, 16810 (2016).
- N. S. A. Yasmin, N. A. Wahab, A. N. Anuar, and M. Bob, "Performance comparison of SVM and ANN for aerobic granular sludge", Bull. Electr. Eng. Informatics., 8, 1392 (2019).
- A. Brou, M. Y. Jaffrin, and L. Ding, "Microfiltration and ultrafiltration of polysaccharides produced by fermentation using a rotating disk dynamic filtration system", J. Courtois, Biotechnol. Bioeng., 82, 429 (2003).
- W. Zhang, L. Ding, M. Y. Jaffrin, and B. Tang, "Membrane cleaning assisted by high shear stress for restoring ultrafiltration membranes fouled by dairy wastewater", Chem. Eng. J., 325, 457 (2017).
- R. Bouzerar, M. Y. Jaffrin, L. Ding, and P. Paullier, "Influence of geometry and angular velocity on performance of a rotating disk filter", AIChE J., 46, 257 (2000).
- A. H. Mohammadi, F. Gharagheizi, A. Eslamimanesh, and D. Richon, "Evaluation of experimental data for wax and diamondoids solubility in gaseous systems", Chem. Eng. Sci., 81, 1 (2012).
- A. Baghban, A. Jalali, M. Shafiee, M. H. Ahmadi, and K. Chau, "Developing an ANFIS-based swarm concept model for estimating the relative viscosity of nanofluids", Eng. Appl. Comput. Fluid Mech., 13, 26 (2019).