• Title/Summary/Keyword: Intelligence Robot

Search Result 348, Processing Time 0.029 seconds

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

How Does the Media Deal with Artificial Intelligence?: Analyzing Articles in Korea and the US through Big Data Analysis (언론은 인공지능(AI)을 어떻게 다루는가?: 뉴스 빅데이터를 통한 한국과 미국의 보도 경향 분석)

  • Park, Jong Hwa;Kim, Min Sung;Kim, Jung Hwan
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.175-195
    • /
    • 2022
  • Purpose The purpose of this study is to examine news articles and analyze trends and key agendas related to artificial intelligence(AI). In particular, this study tried to compare the reporting behaviors of Korea and the United States, which is considered to be a leader in the field of AI. Design/methodology/approach This study analyzed news articles using a big data method. Specifically, main agendas of the two countries were derived and compared through the keyword frequency analysis, topic modeling, and language network analysis. Findings As a result of the keyword analysis, the introduction of AI and related services were reported importantly in Korea. In the US, the war of hegemony led by giant IT companies were widely covered in the media. The main topics in Korean media were 'Strategy in the 4th Industrial Revolution Era', 'Building a Digital Platform', 'Cultivating Future human resources', 'Building AI applications', 'Introduction of Chatbot Services', 'Launching AI Speaker', and 'Alphago Match'. The main topics of US media coverage were 'The Bright and Dark Sides of Future Technology', 'The War of Technology Hegemony', 'The Future of Mobility', 'AI and Daily Life', 'Social Media and Fake News', and 'The Emergence of Robots and the Future of Jobs'. The keywords with high centrality in Korea were 'release', 'service', 'base', 'robot', 'era', and 'Baduk or Go'. In the US, they were 'Google', 'Amazon', 'Facebook', 'China', 'Car', and 'Robot'.

Manipulator with Camera for Mobile Robots (모바일 로봇을 위한 카메라 탑재 매니퓰레이터)

  • Lee Jun-Woo;Choe, Kyoung-Geun;Cho, Hun-Hee;Jeong, Seong-Kyun;Bong, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.507-514
    • /
    • 2022
  • Mobile manipulators are getting lime light in the field of home automation due to their mobility and manipulation capabilities. In this paper, we developed a small size manipulator system that can be mounted on a mobile robot as a preliminary study to develop a mobile manipulator. The developed manipulator has four degree-of-freedom. At the end-effector of manipulator, there are a camera and a gripper to recognize and manipulate the object. One of four degree-of-freedom is linear motion in vertical direction for better interaction with human hands which are located higher than the mobile manipulator. The developed manipulator was designed to dispose the four actuators close to the base of the manipulator to reduce rotational inertia of the manipulator, which improves stability of manipulation and reduces the risk of rollover. The developed manipulator repeatedly performed a pick and place task and successfully manipulate the object within the workspace of manipulator.

Effect of Anthropomorphism Level of Digital Human Banker Speech on User Experience: Focusing on Social Presence, Affinity, Trust, Perceived Intelligence, and Usefulness (디지털 휴먼 은행원 발화의 의인화 수준이 사용자 경험에 미치는 영향: 사회적 실재감, 친밀감, 신뢰도, 인지된 지능, 유용성을 중심으로)

  • Choi, Bomi;Jang, Seojin;Kang, Hyunmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.469-476
    • /
    • 2022
  • As the 3D modeling technology and conversational algorithm is developed, digital humans are being used in various fields, and also virtual bankers have begun to appear in banks, including major banks such as Shin-Han Bank and Nong-Hyup Bank. However, most of the research of digital human mainly focus on its appearance, and research on robot persona that should be considered in anthropomorphizing a robot is insufficient. In this study, an experiment was conducted to find out the user experience of three scenarios (student ID receipt, deposit and withdrawal account opening, leasehold loan consultation) in which the level of anthropomorphism of the speech strategy and the level of personal information use differed in the specific context of banking. As a result of the study, social presence and usefulness had an interactive effect on the scenario and the level of anthropomorphism. There was no interaction effect on intimacy, trustworthiness, and perceived intelligence, but a tendency could be confirmed.

A Diagnosis system of misalignments of linear motion robots using transfer learning (전이 학습을 이용한 선형 이송 로봇의 정렬 이상진단 시스템)

  • Su-bin Hong;Young-dae Lee;Arum Park;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.801-807
    • /
    • 2024
  • Linear motion robots are devices that perform functions such as transferring parts or positioning devices, and require high precision. In companies that develop linear robot application systems, human workers are in charge of quality control and fault diagnosis of linear robots, and the result and accuracy of a fault diagnosis varies depending on the skill level of the person in charge. Recently, there have been many attempts to utilize artificial intelligence to diagnose faults in industrial devices. In this paper, we present a system that automatically diagnoses linear rail and ball screw misalignment of a linear robot using transfer learning. In industrial systems, it is difficult to obtain a lot of learning data, and this causes a data imbalance problem. In this case, a transfer learning model configured by retraining an established model is widely used. The information obtained by using an acceleration sensor and torque sensor was used, and its usefulness was evaluated for each case. After converting the signal obtained from the sensor into a spectrogram image, the type of abnormality was diagnosed using an image recognition artificial intelligence classifier. It is expected that the proposed method can be used not only for linear robots but also for diagnosing other industrial robots.

Recent Trends in Human-Care Robot and Social Interaction Technology (휴먼케어 로봇과 소셜 상호작용 기술 동향)

  • Ko, Woori;Cho, Miyoung;Kim, Dohyung;Jang, Minsu;Lee, Jaeyeon;Kim, Jaehong
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.34-44
    • /
    • 2020
  • This paper examines the trends of recently developed human-care robots and social interaction technologies. As one of the solutions to the problems of an aging society, human-care robots have gained considerable attention from the public and the market. However, commercialized human-care robots do not meet user expectations for the role as companions. Current robot services based on short-term interaction and fragmentary pieces of intelligence have encountered difficulty in eliciting natural communication with humans. This results in the failure of human-robot social bonding. Social interaction is being actively investigated as a technique for improving robots' natural communication skills. Robots can form a natural bond with humans through social interaction, which consequently increases their effectiveness. In this paper, we introduce recent human-care robot-related issues and subsequently describe technical challenges and implications for the success of human-care robots. In addition, we review recent trends on social interaction technologies and the datasets required.

Implementation of Hybrid Deliberative/Reactive Control Architecture for Autonomous Navigation of a Mobile Robot in Dynamic Environments (동적 환경에서 이동로봇의 자율주행을 위한 혼합 심의/반응 제어구조의 구현)

  • Nam Hwa-Sung;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.154-160
    • /
    • 2006
  • Instantaneous reaction and intelligence are required for autonomous mobile robots to achieve multiple goals in the unpredictable and dynamic environments. Design of the appropriate control architecture and clear definitions of systems are needed to construct and control these robots. This research proposes the hybrid deliberative/reactive control architecture which consists of three layers and uses the method of software structure design. The highest layer, Deliberative Layer makes the overall run-time schedule for navigation and/or manipulation, and the middle layer, Task Execution Layer carries out various missions. The lowest layer, Reactive Layer enables a robot to react rapidly in the dynamic environment and controls the mechanical devices concurrently. This paper proposes independent system supervisors called Manager to reuse the modules so that the Manager supports common use of the system and multi-processing tasks. It is shown that the mobile robot based on the proposed control scheme can perform the basic navigation and cope with the dynamic obstacles reasonably well.

The Absolute Position Recognition Using the Map in Space for Navigation of a Mobile Robot (초음파센서를 가진 이동로봇의 주행을 위한 지도를 이용한 공간상의 절대위치 인식 실현)

  • Jeong, Joon-Young;Kim, Yong-Yil;Kim, Ji-Hyun;Han, Seok-Jin;Kim, Sang-Gweon;Kim, Pan-Dol;Lee, Hong-Won
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.302-304
    • /
    • 1994
  • In this paper, we introduce the current implementation status of the absolute position recognition technique using sonars for the navigation of a mobile robot. Using this technique, we have developed the supervisory controller of the autonomous vacuum cleaning robot which can recognize the user-specified origin, moves its body to the origin, and follow the specified trajectory starting from the origin. With the satisfactory results, we expect the autonomous cleaning robot to be commercialized in a very near future.

  • PDF

Learning-based Inertial-wheel Odometry for a Mobile Robot (모바일 로봇을 위한 학습 기반 관성-바퀴 오도메트리)

  • Myeongsoo Kim;Keunwoo Jang;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • This paper proposes a method of estimating the pose of a mobile robot by using a learning model. When estimating the pose of a mobile robot, wheel encoder and inertial measurement unit (IMU) data are generally utilized. However, depending on the condition of the ground surface, slip occurs due to interaction between the wheel and the floor. In this case, it is hard to predict pose accurately by using only encoder and IMU. Thus, in order to reduce pose error even in such conditions, this paper introduces a pose estimation method based on a learning model using data of the wheel encoder and IMU. As the learning model, long short-term memory (LSTM) network is adopted. The inputs to LSTM are velocity and acceleration data from the wheel encoder and IMU. Outputs from network are corrected linear and angular velocity. Estimated pose is calculated through numerically integrating output velocities. Dataset used as ground truth of learning model is collected in various ground conditions. Experimental results demonstrate that proposed learning model has higher accuracy of pose estimation than extended Kalman filter (EKF) and other learning models using the same data under various ground conditions.

Design of an Autonomous Firefighting Robot System for Early Fire Suppression (초기 화재 진압을 위한 자율주행 소방 로봇 시스템 설계)

  • Hyo Min Kim;Jeong Yong Kim;Seong Jun Mun;A-hyeon Lee;Chang Su Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.287-292
    • /
    • 2024
  • The initial suppression of fires is critical to protecting human and material resources. In response to this, fire prevention and suppression systems using artificial intelligence and robot technology have recently been studied. In particular, an autonomous driving system that detects a fire using CNN is attracting attention. These systems respond quickly in the event of a fire, enabling initial fire suppression. However, since the conventional system is not equipped with a fire suppression function, direct intervention of firefighters is required. (1) To overcome these limitations, we propose an autonomous fire detection robot system equipped with a fire suppression function ROS-based firefighting system called 'ADEFS' (Autonomous-Detect & Extinguish-Fire Service). (2) The system performs three tasks to detect and extinguish. Tasks are to run the Ros-based SLAM Navigation, YOLO-CNN, and Four-degree freedom manipulator connected to the fire extinguishing pump. (3) Through this, early response in the event of a fire can minimize damage to life and property and can reduce labor costs, which can also be expected to reduce costs for companies.