• 제목/요약/키워드: Integration Error

검색결과 507건 처리시간 0.021초

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

Error Accumulation and Transfer Effects of the Retrieved Aerosol Backscattering Coefficient Caused by Lidar Ratios

  • Liu, Houtong;Wang, Zhenzhu;Zhao, Jianxin;Ma, Jianjun
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.119-124
    • /
    • 2018
  • The errors in retrieved aerosol backscattering coefficients due to different lidar ratios are analyzed quantitatively in this paper. The actual calculation shows that the inversion error of the aerosol backscattering coefficients using the Fernald backward-integration method increases with increasing inversion distance. The greater the error in the lidar ratio, the faster the error in the aerosol backscattering coefficient increases. For the same error in lidar ratio, the smaller actual aerosol backscattering coefficient will get the larger relative error of the retrieved aerosol backscattering coefficient. The errors in the lidar ratios for dust or the cirrus layer have great impact on the retrievals of backscattering coefficients. The interval between the retrieved height and the reference range is one of the important factors for the derived error in the aerosol backscattering coefficient, which is revealed quantitatively for the first time in this paper. The conclusions of this article can provide a basis for error estimation in retrieved backscattering coefficients of background aerosols, dust and cirrus layer. The errors in the lidar ratio of an aerosol layer influence the retrievals of backscattering coefficients for the aerosol layer below it.

접촉면에서 모든 적합조건을 만족시키는 동적인 접촉현상의 해법 (Dynamic Contact Analysis Satisfying All the Compatibility Conditions on the Contact Surface)

  • 이기수
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1243-1250
    • /
    • 1995
  • For the numerical solution of frictional dynamic contact problems, correct contact points and displacements are determined by iteratively reducing the displacement error vector monotonically toward zero And spurious oscillations are prevented from the solution by enforcing the velocity and acceleration compatibilities of the contact points with the corresponding error vectors. Numerical simulations are conducted to demonstrate the accuracy of the solution and the necessity of the velocity and acceleration compatibilities on the contact surface.

Frequency Tracking Error Analysis of LQG Based Vector Tracking Loop for Robust Signal Tracking

  • Park, Minhuck;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.207-214
    • /
    • 2020
  • In this paper, we implement linear-quadratic-Gaussian based vector tracking loop (LQG-VTL) instead of conventional extended Kalman filter based vector tracking loop (EKF-VTL). The LQG-VTL can improve the performance compared to the EKF-VTL by generating optimal control input at a specific performance index. Performance analysis is conducted through two factors, frequency thermal noise and frequency dynamic stress error, which determine total frequency tracking error. We derive the thermal noise and the dynamic stress error formula in the LQG-VTL. From frequency tracking error analysis, we can determine control gain matrix in the LQG controller and show that the frequency tracking error of the LQG-VTL is lower than that of the EKF-VTL in all C/N0 ranges. The simulation results show that the LQG-VTL improves performance by 30% in Doppler tracking, so the LQG-VTL can extend pre-integration time longer and track weaker signals than the EKF-VTL. Therefore, the LQG-VTL algorithm is more robust than the EKF-VTL in weak signal environments.

Attitude Determination GPS/INS Integration System Design Using Triple Difference Technique

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.615-625
    • /
    • 2012
  • GPS attitude outputs or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS output is applied to the attitude determination GPS/INS (ADGPS/INS) integrated navigation system, the performance of the system can be degraded. This paper proposes an ADGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which the inertial information is combined. Computer simulations and flight test were performed to verify effectiveness of the proposed navigation system. Results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correctly resolved and the cycle slip occurs.

A remedy for a family of dissipative, non-iterative structure-dependent integration methods

  • Chang, Shuenn-Yih;Wu, Tsui-Huang
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.45-53
    • /
    • 2018
  • A family of the structure-dependent methods seems very promising for time integration since it can simultaneously have desired numerical properties, such as unconditional stability, second-order accuracy, explicit formulation and numerical dissipation. However, an unusual overshoot, which is essentially different from that found by Goudreau and Taylor in the transient response, has been experienced in the steady-state response of a high frequency mode. The root cause of this unusual overshoot is analytically explored and then a remedy is successfully developed to eliminate it. As a result, an improved formulation of this family method can be achieved.

Explicit Motion of Dynamic Systems with Position Constraints

  • Eun, Hee-Chang;Yang, Keun-Hyuk;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.538-544
    • /
    • 2003
  • Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.

Current Mirror-Based Approach to the Integration of CMOS Fuzzy Logic Functions

  • Patyra, Marek J.;Lemaitre, Laurent;Mlynek, Daniel
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.785-788
    • /
    • 1993
  • This paper presents the prototype framework for automated integration of CMOS current-mode fuzzy logic circuits using an intelligent module approach. The library of modules representing the standard fuzzy logic operators was built. These modules were finally used to synthesized sophisticated fuzzy logic units. Fuzzy unit designs were made based upon the results of a newel methodology of the current mirror-based fuzzy logic function synthesis. This methodology is actually incorporated into the presented framework. As an example, the membership function unit was synthesized, simulated, and the final layout was generated using the presented framework. Finally, the fuzzy logic controller unit (FLC) was generated using the proposed framework. Simulation as well as measurement results show unquestionable advantages of the proposed fuzzy logic function integration system over the classical design methodology with respect to the area, relative error and performance.

  • PDF

가중계수에 의한 다회선 초음파유량계의 유량적분오차 (Flowrate Integration Errors of Multi-path Ultrasonic Flowmeter using Weighting Factors)

  • 이호준;황상윤;김경진
    • 한국유체기계학회 논문집
    • /
    • 제7권5호
    • /
    • pp.7-12
    • /
    • 2004
  • Multi-path ultrasonic flowrate measuring technology is being received much attentions from a variety of industrial fields to exactly measure the flowrate. Multi-path ultrasonic flowmeter has much advantage since it has no moving parts and little pressure loss. It offers good accuracy, repeatability, linearity and turn-down ratio can be over 1:50. The present study investigates flowrate integration errors using weighting factors. A theoretical flow model uses power law to describe a fully developed velocity profiles and wall roughness is changed. Gaussian, Chebyshev, and Tailor methods are used to integrate line-average velocities. The obtained results show that Chebyshev method in 2, 4-path arrangement and Gaussian method in 3, 5-path arrangement are not affected for wall roughness changes.

가중계수에 의한 다회선 초음파 유량계의 유량적분오차 (Flowrate Integration Errors of Multi-path Ultrasonic Flowmeter using Weighting Factors)

  • 이호준;황상윤;김경진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.154-160
    • /
    • 2003
  • Multi-path ultrasonic flowrate measuring technology is being received much attentions from a variety of industrial fields to exactly measure the flowmeter. Multi-path ultrasonic flowmeter has much advantage since it has no moving parts and not occurred pressure loss. It offers good accuracy, repeatability, linearity and Tum-down ratio can measure over 1:50. The present study investigates flowrate integration errors using weighting factors. A theoretical flow model uses power law to describe a fully developed velocity profiles and wall roughness changes. The methods of weighting factor simulate three configurations of measuring location of gaussian, chebyshev and tailor method. The obtained results show that many chord arrangements are not affected for wall roughness changes and can measure accurate flowrate.

  • PDF