• Title/Summary/Keyword: Integral-functional equation

Search Result 43, Processing Time 0.018 seconds

ON A CERTAIN CLASS OF INTEGRAL-FUNCTIONAL EQUATIONS

  • FAGHIH AHMADI, M.
    • Honam Mathematical Journal
    • /
    • v.28 no.3
    • /
    • pp.395-398
    • /
    • 2006
  • In this note, for any given positive integer n, we determine all the continuous solutions f : R ${\rightarrow}$ R of the integral-functional equation $f^n(x)=n_{_o}{^x}f(t)dt$.

  • PDF

THE PARTIAL DIFFERENTIAL EQUATION ON FUNCTION SPACE WITH RESPECT TO AN INTEGRAL EQUATION

  • Chang, Seung-Jun;Lee, Sang-Deok
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.47-60
    • /
    • 1997
  • In the theory of the conditional Wiener integral, the integrand is a functional of the standard Wiener process. In this paper we consider a conditional function space integral for functionals of more general stochastic process and the generalized Kac-Feynman integral equation. We first show that the existence of a partial differential equation. We then show that the generalized Kac-Feynman integral equation is equivalent to the partial differential equation.

  • PDF

EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS OF A PERTURBED FRACTIONAL FUNCTIONAL-INTEGRAL EQUATION WITH LINEAR MODIFICATION OF THE ARGUMENT

  • Darwish, Mohamed Abdalla;Henderson, Johnny;O'Regan, Donal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.539-553
    • /
    • 2011
  • We study the solvability of a perturbed quadratic functional-integral equation of fractional order with linear modification of the argument. This equation is considered in the Banach space of real functions defined, bounded and continuous on an unbounded interval. Moreover, we will obtain some asymptotic characterization of solutions.

APPROXIMATION OF FIXED POINTS AND THE SOLUTION OF A NONLINEAR INTEGRAL EQUATION

  • Ali, Faeem;Ali, Javid;Rodriguez-Lopez, Rosana
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.869-885
    • /
    • 2021
  • In this article, we define Picard's three-step iteration process for the approximation of fixed points of Zamfirescu operators in an arbitrary Banach space. We prove a convergence result for Zamfirescu operator using the proposed iteration process. Further, we prove that Picard's three-step iteration process is almost T-stable and converges faster than all the known and leading iteration processes. To support our results, we furnish an illustrative numerical example. Finally, we apply the proposed iteration process to approximate the solution of a mixed Volterra-Fredholm functional nonlinear integral equation.

APPLICATION OF FIXED POINT THEOREM FOR UNIQUENESS AND STABILITY OF SOLUTIONS FOR A CLASS OF NONLINEAR INTEGRAL EQUATIONS

  • GUPTA, ANIMESH;MAITRA, Jitendra Kumar;RAI, VANDANA
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.1-14
    • /
    • 2018
  • In this paper, we prove the existence, uniqueness and stability of solution for some nonlinear functional-integral equations by using generalized coupled Lipschitz condition. We prove a fixed point theorem to obtain the mentioned aim in Banach space $X=C([a,b],{\mathbb{R}})$. As application we study some volterra integral equations with linear, nonlinear and single kernel.

Some Nonlinear Alternatives in Banach Algebras with Applications II

  • Dhage, B.C.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.281-292
    • /
    • 2005
  • In this paper a nonlinear alternative of Leray-Schauder type is proved in a Banach algebra involving three operators and it is further applied to a functional nonlinear integral equation of mixed type $$x(t)=k(t,x({\mu}(t)))+[f(t,x({\theta}(t)))]\(q(t)+{\int}_0{^{\sigma}^{(t)}}v(t,s)g(s,x({\eta}\(s)))ds\)$$ for proving the existence results in Banach algebras under generalized Lipschitz and $Carath{\acute{e}}odory$ conditions.

  • PDF

B-SPLINE TIGHT FRAMELETS FOR SOLVING INTEGRAL ALGEBRAIC EQUATIONS WITH WEAKLY SINGULAR KERNELS

  • Shatnawi, Taqi A.M.;Shatanawi, Wasfi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.363-379
    • /
    • 2022
  • In this paper, we carried out a new numerical approach for solving integral algebraic equations with weakly singular kernels. The novel method is based on the construction of B-spline tight framelets using the unitary and oblique extension principles. Some numerical examples are given to provide further explanation and validation of our method. The result of this study introduces a new technique for solving weakly singular integral algebraic equation and thus in turn will contribute to providing new insight into approximation solutions for integral algebraic equation (IAE).

SOLVABILITY AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME NONLINEAR INTEGRAL EQUATIONS RELATED TO CHANDRASEKHAR'S INTEGRAL EQUATION ON THE REAL HALF LINE

  • Mahmoud Bousselsal;Daewook Kim;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.57-79
    • /
    • 2023
  • We investigate the existence and uniform attractivity of solutions of a class of functional integral equations which contain a number of classical nonlinear integral equations as special cases. Using the technique of measures of noncompactness and a fixed point theorem of Darbo type we prove the existence of solutions of these equations in the Banach space of continuous and bounded functions on the nonnegative real half axis. Our results extend and improve some known results in the recent literature. An example illustrating the main result is presented in the last section.

SOME NEW APPLICATIONS OF S-METRIC SPACES BY WEAKLY COMPATIBLE PAIRS WITH A LIMIT PROPERTY

  • Afra, J. Mojaradi;Sabbaghan, M.
    • The Pure and Applied Mathematics
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • In this note we use a generalization of coincidence point(a property which was defined by [1] in symmetric spaces) to prove common fixed point theorem on S-metric spaces for weakly compatible maps. Also the results are used to achieve the solution of an integral equation and the bounded solution of a functional equation in dynamic programming.