• Title/Summary/Keyword: Integral equation

Search Result 1,028, Processing Time 0.027 seconds

Size Effect of Integral Surface of FW-H Equations on Prediction of Aeroacoustic Noise (FW-H 방정식에서 적분표면의 크기가 유동소음 해석결과에 미치는 영향)

  • Yoo, Seung-Won;Lee, Jong-Soo;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.416-421
    • /
    • 2001
  • This paper presents the numerical prediction of sound generated by viscous flow past a circular cylinder. The two dimensional flow field is predicted using FEM based Reynolds-averaged Navier-Stokes solver, and the calculated unsteady fluid field values are utilized by an acoustic code that implements Ffowcs Willianms-Hawkings(FW-H) equation. The integration surface used in acoustic analysis is extended from the cylinder surface to permeable surfaces. The 2D based CFD calculations overpredict the acoustic amplitude, however, if adequate correlation length is used, the predicted acoustic amplitude agrees well with experiment. The predictions using extended integral surface in FW-H equation show results that contain the characteristics of quadrupole - volume integration - noise term, and do not vary seriously with the integral surface location.

  • PDF

Elastic Analysis of a Half-Plane Containing Multiple Inclusions Using Volume Integral Equation Method (체적 적분방정식법을 이용한, 다수의 함유체를 포함한 반무한 고체에서의 탄성해석)

  • Lee, Jung-Ki;Ku, Duck-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.148-161
    • /
    • 2008
  • A volume integral equation method (VIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions subject to remote loading. A detailed analysis of stress field at the interface between the matrix and the central inclusion in the first column of square packing is carried out for different values of the distance between the center of the central inclusion in the first column of square packing of inclusions and the traction-free surface boundary in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions.

A Study on Mode III Kinked Crack Analysis Using Displacement-Discontinuity Method (변위 불연속 방법에 의한 모드 III 꺾인 균열 해석 연구)

  • 서욱환
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.104-110
    • /
    • 2000
  • An integral equation representation of cracks was presented, which differs from well-known "dislocation layer" representation. In this new representation, an integral equation representation of cracks was developed and coupled to the direct boundary-element method for treatment of cracks in plane finite bodies. The method was developed for in-plane (modes I and II) loadings only. In this paper, the method is formulated and applied to mode III problems involving smooth or kinked cracks in finite region. The results are compared to exact solutions where available and the method is shown to be very accurate despite of its simplicity.implicity.

  • PDF

Solution of Gel'fand-Levitan-Marchenko Integral Equation with Restricted Inverse Scattering Potential and Its Applications to Synthesis of Dielectric Constant Distribution (제한된 범위의 역산란 포텐셜을 갖는 Gel'fand-Levitan-Marchenko 적분방정식의 해와 유전율 분포 합성에의 응용)

  • Jang, Wan-Gyu;Jung, Hyun-Soo;Park, Eui-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.54-58
    • /
    • 2003
  • In this study, the solution of Gel'fand-Levitan-Marchenko integral equation in the inverse scattering problem is efficiently solved for arbitrarily specified spectra pattern which are reflected from the restricted potential. The procedure is based on the successive approach without iterations. This method lessens the truncation errors which plague conventional design schemes using specific windows for reflection coefficients. It is shown that the method is adequate for the synthesis of the continuously varying one-dimensional potential of the nonuniformly distributed dielectric constants.

  • PDF

Development of a Numerical Method for Effective Elastic Analysis of Unbounded Solids with Anisotropic Inclusions (이방성 함유체가 포함된 무한고체의 효과적인 탄성해석을 위한 수치해석 방법 개발)

  • 최성준;이정기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.41-52
    • /
    • 1998
  • A volume integral equation method and a mixed volume and boundary integral equation method are presented for the solution of plane elastostatic problems in solids containing orthotropic inclusions and voids. The detailed analysis of the displacement and stress fields are developed for orthotropic cylindrical and elliptic-cylindrical inclusions and voids. The accuracy and effectiveness of the new methods are examined through comparison with results obtained from analytical and boundary integral equation methods. Through the analysis of plane elastostatic problems in unbounded isotropic matrix containing orthotropic inclusions and voids, it is established that these new methods are very accurate and effective for solving plane elastostatic and elastodynamic problems in unbounded solids containing general anisotropic inclusions and voids or cracks.

  • PDF

Numerical Methods for Wave Response in Harbor (항만내의 파도 응답에 관한 수치 계산)

  • D.J.,Kim;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.3
    • /
    • pp.3-12
    • /
    • 1988
  • A natural or an artificial harbor can exhibit frequency(or period) dependent water surface oscillations when excited by incident waves. Such oscillations in harbors can cause significant damage to moored ships and adjacent structures. This can also induce undesirable current in harbors. Many previous investigators have studied various aspects of harbor resonance problem. In the percent paper, both a localizes finite element method(LFEM) which is based on the functional constructed by Chen & Mei(1974) and Bai & Yeung(1974) and an integral equation method which was used by Lee(1969) are applied to harbor resonance problem. The present method(LFEM) shows computationally more efficient than the integral equation method. Our test results shows good agreement compared with other results. This enhanced computational efficiency is due to the fact that the present method gives a banded symmetric coefficients matrix and requires much less computational time in the calculation of the influence coefficients matrix than the integral equation method involved with Green's function. To test the present numerical scheme, two models are treated here. The present method(LFEM) can be extended to a fully three dimensional harbor problem with the similar computational advantage.

  • PDF

Stable Analysis of Electromagnetic Scattering from Arbitrarily Shaped Conductors Coated with a Dielectric Material (유전체로 코팅된 임의 형태 도체의 안정된 전자파 산란 해석)

  • 한상호;정백호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1225-1231
    • /
    • 2003
  • In this paper, we present the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional conducting objects coated with dielectric materials. The integral equation treated here is the combined field integral equation(CFIE). The objectives of this paper is to illustrate that only the CFIE formulation is a valid methodology in removing the interior resonance problem, which occurs at a frequency corresponding to an internal resonance of the structure. Numerical results of radar cross section for coated conducting structures are presented and compared with other available solutions.

Derivation of an Asymptotic solution for a Perfect Conducting Wedge by Using the Dual Integral Equation, Part I : E-Polarized Plane Wave Incidence (쌍적분 방정식을 이용한 완전도체쐐기의 점근해 유도, I : E-분극된 평면파 입사시)

  • 하헌태;나정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.21-29
    • /
    • 1998
  • Dual integral equation in the spectral domain is derived for an arbitrary angled perfect conducting wedge with E-polarized plane wave incidence. Analytic integration of the dual integral equation in the spectral domain with the exact boundary fields of the perfect conducting wedge, the well known series solution, gives the exact asymptotic solution. The validity of the integration is assured by showing that analytic integration gives the null fields in the complementary region.

  • PDF

An iteration approach for multiple notch problem based on complex variable boundary integral equation

  • Chen, Y.Z.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.591-604
    • /
    • 2012
  • This paper provides an iteration approach for the solution of multiple notch problem, which is based on the complex variable boundary integral equation (CVBIE). The contours of notches are applied by some loadings. The source points are assumed on the boundary of individual notch and the displacements along the boundaries become unknowns to be investigated. After discretization of the BIE, many influence matrices are obtained. One does not need to assemble many influence matrices into a larger matrix. This will considerably reduce the work in the program. The displacements along the many boundaries can be obtained from an iteration. There is no limitation for the configuration of notches. Several numerical examples are provided to prove the efficiency of the suggested approach.

Műller Formulation for Analysis of Scattering from 3-D Dielectric Objects with Triangular Patching Model

  • Lee, Chang-Hyun;Cho, Jin-Sang;Jung, Baek-Ho;Sarkar Tapan K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.129-135
    • /
    • 2007
  • In this paper, we present a set of numerical schemes to solve the Muller integral equation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional (3-D) dielectric bodies by applying the method of moments (MoM). The piecewise homogeneous dielectric structure is approximated by planar triangular patches. A set of the RWG (Rao, Wilton, Glisson) functions is used for expansion of the equivalent electric and magnetic current densities and a combination of the RWG function and its orthogonal component is used for testing. The objective of this paper is to illustrate that only some testing procedures for the Muller integral equation yield a valid solution even at a frequency corresponding to an internal resonance of the structure. Numerical results for a dielectric sphere are presented and compared with solutions obtained using other formulations.