• Title/Summary/Keyword: Integral

Search Result 6,539, Processing Time 0.031 seconds

CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES

  • Choi, Junesang;Agarwal, Praveen
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.455-465
    • /
    • 2014
  • In recent years, diverse inequalities involving a variety of fractional integral operators have been developed by many authors. In this sequel, here, we aim at establishing certain new inequalities involving pathway type fractional integral operator by following the same lines, recently, used by Choi and Agarwal [7]. Relevant connections of the results presented here with those earlier ones are also pointed out.

ANALYTIC OPERATOR-VALUED FUNCTION SPACE INTEGRAL REPRESENTED AS THE BOCHNER INTEGRAL:AN$L(L_2)$ THEORY

  • Chang, Kun-Soo;Park, Ki-Seong;Ryu, Kun-Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.599-606
    • /
    • 1994
  • In [1], Cameron and Storvick introduced the analytic operator-valued function space integral. Johnson and Lapidus proved that this integral can be expressed in terms of an integral of operator-valued functions [6]. In this paper, we find some operator-valued Bochner integrable functions and prove that the analytic operator-valued function space integral of a certain function is represented as the Bochner integral of operator-valued functions on some conditions.

  • PDF

Fredholm Type Integral Equations and Certain Polynomials

  • Chaurasia, V.B.L.;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.471-480
    • /
    • 2005
  • This paper deals with some useful methods of solving the one-dimensional integral equation of Fredholm type. Application of the reduction techniques with a view to inverting a class of integral equation with Lauricella function in the kernel, Riemann-Liouville fractional integral operators as well as Weyl operators have been made to reduce to this class to generalized Stieltjes transform and inversion of which yields solution of the integral equation. Use of Mellin transform technique has also been made to solve the Fredholm integral equation pertaining to certain polynomials and H-functions.

  • PDF

INTEGRAL TRANSFORMS AND INVERSE INTEGRAL TRANSFORMS WITH RELATED TOPICS ON FUNCTION SPACE I

  • Chang, Seung-Jun;Chung, Hyun-Soo
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.369-382
    • /
    • 2009
  • In this paper we establish various relationships among the generalized integral transform, the generalized convolution product and the first variation for functionals in a Banach algebra S($L_{a,b}^2$[0, T]) introduced by Chang and Skoug in [14]. We then derive an inverse integral transform and obtain several relationships involving inverse integral transforms.

  • PDF

A NOTE ON THE MODIFIED CONDITIONAL YEH-WIENER INTEGRAL

  • Chang, Joo-Sup;Ahn, Joong-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.4
    • /
    • pp.627-635
    • /
    • 2001
  • In this paper, we first introduce the modified Yeh-Wiener integral and then consider the modified conditional Yeh-Wiener integral. Here we use the space of continuous functions on a different region which was discussed before. We also evaluate some modified conditional Yeh-Wiener integral with examples using the simple formula for the modified conditional Yeh-Wiener integral.

  • PDF

RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING

  • Anastassiou, George A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1423-1433
    • /
    • 2019
  • Here we present the right and left Riemann-Liouville fractional fundamental theorems of fractional calculus without any initial conditions for the first time. Then we establish a Riemann-Liouville fractional Polya type integral inequality with the help of generalised right and left Riemann-Liouville fractional derivatives. The amazing fact here is that we do not need any boundary conditions as the classical Polya integral inequality requires. We extend our Polya inequality to Choquet integral setting.

Exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics

  • Zhang, Xiaosong;Zhang, Xiaoxian
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.279-296
    • /
    • 2008
  • This paper presents an exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics. The boundary is discretized by straight segments and the physical variables are approximated by discontinuous quadratic elements. The integral for the hypersingular boundary integral equation analysis is given in a closed form. It is proven that using the exact integration for discontinuous boundary element, the singular integral in the Cauchy Principal Value and the hypersingular integral in the Hadamard Finite Part can be obtained straightforward without special treatment. Two numerical examples are implemented to verify the correctness of the derived exact integration.

J-integral for subsurface crack in circular plate with inner hole under rolling and sliding contact (구름 및 미끄럼 접촉하의 중공원판의 표면하층균열에 대한 J-적분)

  • Lee, Kang-Yong;Kim, June-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1149-1155
    • /
    • 1997
  • J-integral for a subsurface horizontal crack in a circular plate with an inner hole under rolling line contact is evaluated according to loading positions with various load conditions, crack length and crack location. Two-dimensional crack is modeled, and the relation between Tresca stress for uncracked model and J-integral is discussed. The loading location which gives the maximum J-integral depends on load condition and crack location, and the presence of friction force increases Tresca stress and J-integral near the surface. Regardless of friction force, crack location that gives maximum J-integral is the same as that of maximum Tresca stress in an uncracked model, and the value of J-integral is propotional to crack length. It is also showed that the variation of an inner radius of a disk does not effect J-integral value.

A GRÜSS TYPE INTEGRAL INEQUALITY ASSOCIATED WITH GAUSS HYPERGEOMETRIC FUNCTION FRACTIONAL INTEGRAL OPERATOR

  • Choi, Junesang;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.81-92
    • /
    • 2015
  • In this paper, we aim at establishing a generalized fractional integral version of Gr$\ddot{u}$ss type integral inequality by making use of the Gauss hypergeometric function fractional integral operator. Our main result, being of a very general character, is illustrated to specialize to yield numerous interesting fractional integral inequalities including some known results.

Stability of Time-delayed Linear Systems with New Integral Inequality Proportional to Integration Interval (새로운 적분구간 비례 적분 부등식을 이용한 시간지연 선형시스템의 안정성)

  • Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.457-462
    • /
    • 2016
  • In this paper, we consider the stability of time-delayed linear systems. To derive an LMI form of result, the integral inequality is essential, and Jensen's integral inequality was the best in the last two decades until Seuret's integral inequality is appeared recently. However, these two are proportional to the inverse of integration interval, so another integral inequality is needed to make it in the form of LMI. In this paper, we derive an integral inequality which is proportional to the integration interval which can be easily converted into LMI form without any other inequality. Also, it is shown that Seuret's integral inequality is a special case of our result. Next, based on this new integral inequality, we derive a stability condition in the form of LMI. Finally, we show, by well-known two examples, that our result is less conservative than the recent results.