• Title/Summary/Keyword: Insulation level

Search Result 341, Processing Time 0.027 seconds

Study on Decomposition Gas Characteristics and Condition Diagnosis for Gas-Insulated Transformer by Chemical Analysis

  • Kim, Ah-Reum;Kwak, Byeong Sub;Jun, Tae-Hyun;Park, Hyun-Joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2020
  • Since SF6 gas was discovered in the early 1900s, it has been widely used as an insulation material for electrical equipment. While various indicators have been developed to diagnose oil-immersed transformers, there are still insufficient indicators for the diagnosis of gas-insulated transformers. When necessary, chemical diagnostic methods can be used for gas-insulated transformers. However, the field suitability and accuracy of those methods for transformer diagnosis have not been verified. In addition, since various types of decomposition gases are generated therein, it is also necessary to establish appropriate analysis methods to cover the variety of gases. In this study, a gas-insulated transformer was diagnosed through the analysis of decomposition gases. Reliability assessments of both simple analysis methods suitable for on-site tests and precise analysis methods for laboratory level tests were performed. Using these methods, a gas analysis was performed for the internal decomposition gases of a 154 kV transformer in operation. In addition, simulated discharge and thermal fault experiments were demonstrated. Each major decomposition gas generation characteristics was identified. The results showed that an approximate diagnosis of the inside of a gas-insulated transformer is possible by analyzing SO2, SOF2, and CO using simple analysis methods on-site. In addition, since there are differences in the types of decomposition gas generation patterns with various solid materials of the internal transformer, a detailed examination should be performed by using precise analysis methods in the laboratory.

Analysis of Switching Surge Over-voltage in AC/DC Hybrid Transmission Lines (AC/DC 병가선로의 개폐서지 과전압 해석)

  • Yoo, Seong-Soo;Shin, Koo-Yong;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.459-466
    • /
    • 2022
  • Switching surges are a common type of phenomenon that occur on any sort of power system network. These are more pronounced on long transmission lines and in high voltage converter stations. At AC/DC hybrid transmission lines, the insulation coordination of such lines is mainly dictated by the peak level of switching surges, the most dangerous of which include three phase line energization and AC/DC converter station. The power system structure consist of AC/DC hybrid transmission lines which is combination of AC 765kV and ±500kV HVDC 1 bipole system for contingency analysis. The power system under study and its components are simulated using EMTDC software package, the effects of the various AC/DC mixing power lines are reviewed. The developed models of EMTDC conversion lines based on combination of AC/DC system are simulated and the characteristics of switching surge over-voltage from its results are discussed.

Safety Evaluation of Clearance of Radioactive Metal Waste After Decommissioning of NPP (원전해체후 규제해제 대상 금속폐기물에 대한 자체처분 안전성 평가)

  • Choi, Young-Hwan;Ko, Jae-Hun;Lee, Dong-Gyu;Hwang, Young-Hwan;Lee, Mi-Hyun;Lee, Ji-Hoon;Hong, Sang-Bum
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.291-303
    • /
    • 2020
  • The Kori-Unit 1 nuclear power plant, which is scheduled to be decommissioned after permanent shutdown, is expected to generate large amounts of various types of radioactive waste during the decommissioning process. Among these, nuclear reactors and internal structures have high levels of radioactivity and the dismantled structure must have the proper size and weight on the primary side. During decommissioning, it is important to prepare an appropriate and efficient disposal method through analysis of the disposal status and the legal restrictions on wastes generated from the reactors and internal structures. Nuclear reactors and internal structures generate radioactive wastes of various levels, such as medium, very low, and clearance. A radiation evaluation indicates that wastes in the clearance level are generated in the reactor head and upper head insulation. In this study, a clearance waste safety evaluation was conducted using the RESRAD-RECYCLE code, which is a safety evaluation code, based on the activation evaluation results for the clearance level wastes. The clearance scenario for the target radioactive waste was selected and the maximum individual and collective exposure doses at the time of clearance were calculated to determine whether the clearance criteria limit prescribed by the Nuclear Safety Act was satisfied. The evaluation results indicated that the doses were significantly low, and the clearance criteria were satisfied. Based on the safety assessment results, an appropriate metal recycle and disposal method were suggested for clearance, which are the subject of the deregulation of internal structures of nuclear power plant.

An Investigation on the Airborne Asbestos Concentrations using PCM and TEM in the Public Buildings in Seoul (PCM과 TEM을 이용한 서울지역 일부 공공 건축물의 실내공기 중 석면농도 조사)

  • Chung, Sook-Nye;Nam, Eun-Jung;Hwang, Soon-Yong;Oh, Seok-Ryul;Shin, Jin-Ho;Eom, Seok Won;Chae, Young-Zoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.139-145
    • /
    • 2011
  • Objectives: This investigation is purposed to evaluate the airborne asbestos concentrations in the public buildings having asbestos containing materials(ACMs) in Seoul. Methods: The Seoul Metropolitan Government carried out an asbestos survey to the city-owned public buildings to identify the level of risk exposure, classified into low, moderate and high risk. To evaluate the airborne concentration of asbestos, 11 sampling sites in ten buildings based on the survey were selected. The air samples from the eleven sites were analyzed by Phase Contrast Microscopy(PCM) and Transmission Electron Microscopy (TEM), and compared the analytical results from the both. Results: 1. The airborne fiber concentrations by PCM were less than the detection limit($7f/mm^2$) in 9(82%) out of 11 sampling sites. The highest concentration was 0.0043 f/cc, but it was below the guideline value for indoor air quality(0.01 f/cc), proposed by the Ministry of Environment, Korea. 2. In two sampling sites, having moderate risk level, the chrysotile was identified and showed it's concentrations of 0.0102 s/cc and 0.0058 s/cc, less than $5{\mu}m$ lengths. 3. The ACMs identified in the two sampling sites were a packing material(65% of chrysotile) in mechanical area and a thermal system insulation(5% of chrysotile) in a boiler room. Having more possibility of asbestos emission in the mechanical area, it would be required to set up and carry out the asbestos management plan. Conclusions: Based on the result of this study, the airborne asbestos concentrations in the public buildings with ACMs were generally lower than the guideline value for indoor air quality. There are widespread concerns about the possible health risk resulting from the presence of airborne asbestos fibers in the public buildings. Most of the previous studies about airborne asbestos analysis in Korea were performed based on PCM method that asbestos and non-asbestos fibers are counted together. In the public and commercial buildings, having ACMs, it is suggested that the asbestos be analyzed by TEM method to identify asbestos due to concerns about asbestos exposure to workers and unspecified people.

Experimental Study on behavior of the Lightweight Air-foamed Soil Considering Freezing-thawing and Soaking Conditions (동결융해 및 수침조건을 고려한 경량기포혼합토의 거동 실험 연구)

  • Kang, Daekyu;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.37-46
    • /
    • 2016
  • In order to determine the variability of environmental characteristics of lightweight air-foamed soil using marine clay according to freezing-thawing and soaking conditions, unconfined compressive strength of the lightweight air-foamed soil samples made by changing the amount of cement under curing conditions of outdoor low temperature, underground or indoor wetting were observed. Compressive strength was not increased under freezing-thawing (temperature range of $-9.1^{\circ}C{\sim}17.2^{\circ}C$) regardless of the amount of cement but the more cement using, it was increased rapidly by underground curing conditions within 30 cm beneath ground level. Therefore, it is necessary to install insulation layer cutting off exterior cold air after construction of lightweight air-foamed soil in condition of freezing-thawing. Bulk density was increased too small under the long-time soaking condition, it tended to decrease rapidly when samples were dried up and had below 6% of water contents. But variability of compressive strength and bulk density was very small for preventing drying and keeping its wet state. The lightweight air-foamed soil that installed beneath ground water level or covered by soil can be evaluated as a long-term reliable construction material.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

A Study on the Efficiency Estimation of Halogen free Fire Resistance Cable (저독성 내화전선 케이블의 성능평가에 관한 연구)

  • 윤헌주;홍진웅;유동일;윤재선;곽동일
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • Efficiency estimation of toxicity free resistance cable experiments were conducts to understand toxicity free fire ersistance polyolefin insulation material and smoke density characteristic and combustion gas corrosion analysis. A main cause of fire-growth and generating toxic gas when it burns, should be dealt with great care in life safety design. Similar patterned fire incidents such as, Inchon Live-Hof Pub Restaurant as, Sea-land Children Resort have proven that serious loss of lives were caused by hazardous gas generated fire resistance cable materials. In this paper, Referenced documents were ASTM E662 standard test method for specific Ds genalated by solid materials. The furnace control system shall maintain the required irradiance level under steady-state condition with the chamber door closed of 2.5$\pm40.04〔w/$\textrm{cm}^2$〕for 20 min. According to the results of the smoke density analysis of NFR-8 and FR-PVC the highest decomposition flaming smoke density range of NFR-8 and FR-PVC were 25.2 to 37.5 and 51.1 respectively. Nonflaming smoke density range of NFR-8 and FR-PVC were 100.4 to 112.2 and 126.5 to 398.8. Also, the fire gases was occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC which has high content of carbon in chemical compound.

A Study on the Integrated Control and Safety Management System for 9% Ni Steel LNG Storage Tank (9% 니켈강재식 LNG 저장탱크용 통합제어안전관리시스템에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents the development of an integrated control and safety management system for 9% nickel steel LNG storage tank. The new system added the measuring equipment of pressure, displacement and force compared to the conventional measurement and control system. The measured data has simultaneously been processed by integrating and analyzing with new control equipments and safety management systems. The integrated control and safety management system, which may increase a safety and efficiency of a super-large full containment LNG storage tank, added additional pressure gauges and new displacement/force sensors at the outer side wall and a welding zone of a stiffener and top girder of an inner tank, and the inner side wall of a corner protection tank. The displacement and force sensors may provide failure clues of 9% nickel steel structures such as an inner tank and a corner protection, and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on 9% nickel steel tank fracture even though LNG is leaked until the leak detector, which is placed at the insulation area between an inner tank and a corner protection tank, sends a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force, and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from control systems such as displacement and force of 9% nickel steel tank safety, LNG level and density, cool-down process, leakage, and pressure controls.

Improvement of Fire Resistance for Timber Framed Walls by Reinforcement of Heavy Timber Frame

  • Park, Joo-Saeng;Hwang, Kweon-Hwan;Kim, Kwang-Mo
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.6
    • /
    • pp.469-478
    • /
    • 2010
  • Fire resistance of new hybrid timber framed wall systems was evaluated in this study. These wall systems are composed of two major structural parts. One part is a heavy timber frame part designed to take charge of whole vertical load using heavy timber post and beam, and the other is an infill wall structure, designed to take charge of whole horizontal load and to provide an established level of fire resistance. A basic concept of this hybrid wall is adopted from a typical furniture structure with frame. A timber post and beam frame is constructed with Japanese Larch solid timber post(180mm by 180mm) and beam(180mm by 240mm). As infill wall systems, two types of walls are applied. One is a typical light timber framed wall with solid blocking and another is a structural insulated panel wall, in which polystyrene insulation is filled between two structural panels to make single structure. For all tested walls, two layers of 12.5mm thick type-X gypsum boards are used on fire exposed side. Prior to tests for hybrid walls, only infill walls are tested without heavy timber frame. All fire resistance tests are carried out in accordance with KS F 2257, and temperatures on several points within wall structure and unexposed wall surface are measured during fire tests. It is considered that the reinforcement of heavy timber frame is significantly efficient for improving the fire resistance of timber framed walls.

  • PDF

A Study on Integrated Control and Safety Management Systems for LNG Membrane Storage Tank (멤브레인식 LNG 저장탱크용 통합제어안전관리시스템에 대한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, the integrated control and safety management system for a super-large LNG membrane storage tank has been presented based on the investigation and analysis of measuring equipments and safety analysis system for a conventional LNG membrane storage tank. The integrated control and safety management system, which may increase a safety and efficiency of a super-large LNG membrane storage tank, added additional pressure gauges and new displacement/force sensors at the steel anchor between an inner tank and a prestressed concrete structure. The displacement and force sensors may provide clues of a membrane panel failure and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on the membrane panel fracture even though LNG is leaked until the leak detector, which is placed at the insulation area behind an inner tank, send a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from measurement systems such as displacement and force of a membrane panel safety, LNG level and density, cool-down process, leakage, and pressure controls.