• Title/Summary/Keyword: Insulation Design

Search Result 899, Processing Time 0.026 seconds

Study on the Electric Insulation Characteristics in a Fuel Cell Vehicle (연료전지 차량의 전기적 절연 특성에 관한 연구)

  • Yu, Jung-Han;kim, Duck-Whan;Kim, Ju-Han;Jeong, Kwi-Seong;Kum, Young-Bum;Kim, Sae-Hoon;Ahn, Deuk-Kuen
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.2
    • /
    • pp.150-155
    • /
    • 2012
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack power output is needed to be approximately 100 kW to meet the requirements of automotive applications. In order to secure the electric safety for drivers, passengers and mechanics, it is very important to understand phenomena of an electric insulation in a fuel cell vehicle. In this study, we studied the electric insulation properties and the insulation resistance of stack, system and vehicle in the field of fuel cell was estimated at the applied voltage of 500 V, respectively. Also we discussed the insulation factors such as the conductivity of coolant, the element of vehicle design and the intrinsic resistance of the vehicle components.

Chemical Properties of Insulation Paper in oil after Thermal Aging (열 열화에 따른 유입절연지의 화학적 특성)

  • Kim, Pil-Hwan;Kim, Jae-Hoon;Kim, Ju-Han;Lee, Won-Yeong;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.77-79
    • /
    • 2004
  • It is caused that insulation paper, which had got a lot of thermal stress by over-load after installation, should have been deteriorated in electrical and mechanical characteristics. Beside, insulation material is decreased the insulating property and accelerated aging of them in case of dielectric loss when transformers are manufactured with some moisture or transformers would have been them because of moisture-permeation. Therefore, in this study we experienced the influence of moisture content in case of the thermal aged insulation paper. we have measured tan 6 and breakdown voltage in the ratio of paper' moisture content before the aging and then taken the same tests again after insulation paper thermally accelerating-aged. There is a purpose to gain data for a life-design and to establish aging mechanism in order to continuously study life expectancy of the insulation paper

  • PDF

A Study on the Optimization of Interfacial Pressure for the Stress Relief Cone in the Ultra-High Voltage Level Prefabricated Type Joint Box (초초고압 CV Cable용(用) 조립형 직선 접속함에서의 Stress Relief Cone 계면압력 최적화에 관한 연구)

  • Baek, J.H.;Baek, S.Y.;Lee, S.K.;Huh, G.D.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1614-1616
    • /
    • 1998
  • Insulation performance of major components of prefabricated joint such as epoxy insulation unit and premolded rubber cone are guaranteed by material selection design and proper manufacturing. On the other hand insulation performance of the interfaces between the premolded rubber cone and the epoxy insulation unit and the cable insulation is maintained by keeping the premolded rubber cone to close contact with such insulation by spring. Electric characteristics of a interface depend on the contact pressure, but the required characteristics are assured so far as a proper contact pressure is maintained. In this report, the interfacial pressure by pressure sensors both in the early stage and after heating cycle were measured and the simulation by FEM program were presented. The comparison of these two results show that interfacial pressure could be controlled optimally by changing the spring length and lubricant state of the interface.

  • PDF

Insulation Design and Test of Model Windings for the Development of High Temperature Superconducting Transformer (고온초전도변압기 개발을 위한 모델 권선의 절연 설계 및 평가)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kwak, Dong-Sun;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.19-22
    • /
    • 2003
  • In the response to increasing the demands for electrical energy, much effort aimed to develop and commercialize 1MVA HTS power equipments that is supported by a grant from center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology is going on in Korea. For the development, the cryogenic insulation and winding insulation of it in this paper are discussed. In the first many types of dielectric insulating tests were carried out. In detail Breakdown characteristics of $LN_2$, FRP and turn insulating films, flashover characteristics along the FRP surface in $LN_2$ were verified after distinguishing insulation components in HIS windings. And then model windings were designed and insulation test was conducted. These included a AC withstand voltage test of 50kV rms and a lightning impulse test of 150kV at peak.

  • PDF

Thermal Analysis for the GT-96 Membrane Type LNGC during the Cool-down Period (GT-96 멤브레인형 LNGC의 급냉기간에서의 열해석)

  • Lee, Jung-Hye;Choi, Hyun-Kue;Choi, Soon-Ho;Oh, Cheol;Kim, Myoung-Hwan;Kim, Kyung-Kun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1346-1351
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000 $m^3$ class GT-96 membrane type LNG carrier under IMO design condition. The cool-down is performed to cool the insulation wall and the natural gas in cargo tank for six hours to avoid the thermal shock at the start of loading of $-163^{\circ}C$ LNG. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls clown from $-40^{\circ}C$ to $-130^{\circ}C$ and the spraying rate for the insulation wall cooling increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the 1 st barrier and 1st insulation, which are among the insulation wall, especially in the top side of the insulation wall. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted.

  • PDF

A Study on Insulation Performance Enhancement of Existing Transmission Line Considering Overvoltage Analysis Result and Fault Characteristic (과전압 분석 결과와 고장특성을 고려한 기설 송전선로의 절연보강 방법에 관한 연구)

  • Kwak, Joo-Sik;Woo, Jung-Woog;Koo, Kyo-Sun;Kim, Kyung-Tak;Kweon, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.162-168
    • /
    • 2009
  • This paper describes a study that is to redesign insulation of transmission lines and determine required the numbers of insulators in order to enhance the insulation performance of existing transmission lines which were constructed with standard insulation design, considering overvoltage analysis results, probabilities and characteristics of faults. To ensure proper insulation distance without deteriorating the required performance, EMTP model is established to calculate maximum overvoltage in the line. The fault records and predicted outage rates due to lightning and contamination in the line were investigated and analyzed respectively. It presents a method to determine the numbers of insulators considering the probability and the characteristic of fault.

Development of Compact Towers with Insulation Arm in Korea (절연암 적용 컴팩트 철탑 개발)

  • Lee, Won-kyo;Yun, Cheol-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.63-66
    • /
    • 2018
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea as well as the other countries. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed compact towers that are more attractive, well blend into the surrounding environment and much more economical than underground transmissions. This paper shows the design of a compact towers with insulation arm, in order to reduce the height of tower and the separation between phases. The compact tower can be installed in a narrow right-of-way. Insulation arms are easily applied to lattice and steel tubular towers instead of steel arms. Compact towers with insulation arm are also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people. Compact tower compared with a conventional tower, insulation arms reduces the width and height of the tower by 20% and 15% respectively.

Insulation Characteristics of Dry-air Insulated Switchgear for 72.5 kV Wind Power Generation (72.5 kV 풍력 발전용 Dry-air Switchgear의 절연 특성)

  • Chan-Hee Yang;Jin-Seok Oh;Hee-Tae Park;Young-il Kim
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.5-9
    • /
    • 2024
  • This paper describes the insulation breakdown characteristics of 72.5 kV dry-air insulated switchgear under development for installation in a wind power generator when a lightning impulse voltage is applied. For this study, the weak point of insulation due to the electric field concentration of the switchgear's internal shape was identified by finite element method (FEM) analysis, and the shape was actually simulated to measure and analyze the polarity of the lightning impulse voltage and the insulation breakdown characteristics according to the gas pressure at dry-air pressures of 0.1 Mpa to 0.45 Mpa. This study derives the maximum electric field with a 50 % discharge probability for each switchgear internal insulation vulnerable point based on the actual test and electrical simulation, which will be useful as reference data for supplementing and changing insulation design in the future.

Insulation Performance Evaluation through Insulation Test and Transient Heat Transfer Analysis of Cryogenic Common Bulkhead Propellant Tanks (극저온 공통격벽 추진제 탱크의 단열 시험과 과도 열전달 해석을 통한 단열 성능 평가)

  • Yeji Kim;Gyeong-Han Lee;Sang Min Choi;Sang-Woo Kim;Soo-Yong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.109-116
    • /
    • 2024
  • The validity of the analysis results was confirmed based on the insulation test results, and the vaporization mass generated in the common bulkhead was calculated to evaluate the common bulkhead propellant tank's insulation performance. The analysis results were validated by comparing the transient heat transfer analysis with the insulation test results. A transient heat transfer analysis was subsequently conducted on the common bulkhead propellant tank, considering the internal heat conduction in the propellant tank and natural convection heat transfer due to the outside air. This analysis extracted the heat flux generated in the common bulkhead and quantified the vaporization mass, a key indicator of insulation performance. Consequently, the vaporization mass was calculated at 0.09 kg, below the insulation design standard of 0.12 kg for the common bulkhead propellant tank, confirming it meets the insulation performance standard.

Development of the Passive Outside Insulation Composite Panel for Energy Self-Sufficiency of Building in the Region (지역 건축물의 에너지 자립을 위한 패시브 외단열 복합패널 개발 연구)

  • Moon, Sun-Wook
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The study aims to address the energy crisis and realize self-sufficiency of building as part of local energy independence, breaking away from a single concentrated energy supply system. It is intended to develop modules of the outside insulation composite panels that conform to passive certification criteria and for site-assembly systematization. The method of study first identifies trends and passive house in literature and advanced research. Second, the target performance for development is set, and the structural material is selected and designed to simulate performance. Third, a test specimen of the passive outside insulation curtain wall module designed is manufactured and constructed to test its heat transmission coefficient, condensation performance and airtightness. Finally, analyze performance test results, and explore and propose ways to improve the estimation and improvement of incomplete causes to achieve the goal. The final test results achieved the target performance of condensation and airtightness, and the heat transmission coefficient was $0.16W/(m^2{\cdot}K)$, which is $0.01W/(m^2{\cdot})K$ below the performance target. As for the lack of performance, we saw a need for a complementary design to account for simulation errors. It also provided an opportunity to recognize that insulated walls with performance can impact performance at small break. Thus, to be commercialized into a product with the need for improvement in the design of the joint parts, a management system is needed to increase the precision in the fabrication process.