DOI QR코드

DOI QR Code

Insulation Performance Evaluation through Insulation Test and Transient Heat Transfer Analysis of Cryogenic Common Bulkhead Propellant Tanks

극저온 공통격벽 추진제 탱크의 단열 시험과 과도 열전달 해석을 통한 단열 성능 평가

  • Yeji Kim (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Gyeong-Han Lee (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sang Min Choi (Space/Future Technology, Korean Air R&D Center) ;
  • Sang-Woo Kim (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Soo-Yong Lee (Research Institute for Aerospace Engineering and Technology, Korea Aerospace University)
  • 김예지 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이경한 (한국항공대학교 항공우주 및 기계공학과) ;
  • 최상민 (대한항공 항공기술연구원) ;
  • 김상우 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이수용 (한국항공대학교 항공우주산업기술연구소)
  • Received : 2024.07.05
  • Accepted : 2024.08.05
  • Published : 2024.08.31

Abstract

The validity of the analysis results was confirmed based on the insulation test results, and the vaporization mass generated in the common bulkhead was calculated to evaluate the common bulkhead propellant tank's insulation performance. The analysis results were validated by comparing the transient heat transfer analysis with the insulation test results. A transient heat transfer analysis was subsequently conducted on the common bulkhead propellant tank, considering the internal heat conduction in the propellant tank and natural convection heat transfer due to the outside air. This analysis extracted the heat flux generated in the common bulkhead and quantified the vaporization mass, a key indicator of insulation performance. Consequently, the vaporization mass was calculated at 0.09 kg, below the insulation design standard of 0.12 kg for the common bulkhead propellant tank, confirming it meets the insulation performance standard.

본 연구에서는 단열 시험 결과를 기반으로 해석 결과의 유효성 검증을 수행하였으며, 공통격벽에서 발생하는 기화 질량을 산출하여 공통격벽 추진제 탱크의 단열 성능을 평가하였다. 과도 열전달 해석 결과와 단열 시험 결과를 비교하여 해석 결과의 유효성을 검증하였다. 이후 추진제 탱크에서 발생하는 내부 열전도와 외기로 인한 자연 대류 열전달을 고려하여, 공통격벽 추진제 탱크에 대한 과도 열전달 해석을 수행하였다. 이를 통해, 공통격벽에서 발생하는 열 유속을 추출하고, 단열 성능의 정량적 지표인 기화 질량을 산출하였다. 그 결과 공통격벽 추진제 탱크의 단열 설계 기준인 0.12 kg 보다 낮은 0.09 kg의 기화질량이 산출되어 단열 성능 기준에 부합함을 확인하였다.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부의 거대과학연구개발사업인 '스페이스파이오니어사업'에 의해 수행되었습니다 (No.2021M1A3B9096764). 또한 이 연구는 2024년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임. (No.2022R1A6A1A03056784).

References

  1. B. S. Oh, J. H. Lee, W. R. Roh, M. O. Joh, J. J. Park, & G. R. Cho, "The Conceptual Design of Launch Vehicle." Journal of the Korean Society for Aeronautical & Space Sciences, vol. 30, no. 6, pp. 130-141. 2002. 
  2. Lee. J, Seo. D, Choi. S, Lee. K, Park. J., " Conceptual Design of a Common Bulkhead Propellant Tank for the Upper Stage of a Small Launch Vehicle." Proceeding of the Korean Society for Aeronautical & Space Sciences Fall conference, pp. 938-939, 2021 
  3. M. Ragab & F. M. Cheatwood, "Launch vehicle recovery and reuse". AIAA SPACE 2015 conference and exposition, pp. 4490, Aug 2015. 
  4. P. Wang, Y. Lei & Z. Yue, "Experimental and numerical evaluation of the flexural properties of stitched foam core sandwich structure". Composite structures, 100, pp. 243-248. 2013. 
  5. Y. P. Singh, H. Singh, P. K. Sahu & R. Muthukumar, "Common bulkhead tank design for cryogenic stage of an Indian launch vehicle." Defence Science Journal, vol. 72, No.1, pp. 3-9. 2022. 
  6. N.K. Cho, D.B. Seo, B.I. Yoo, S.H. Kim & Y.M. Han, "Investigation on Chilling Procedure for LOX Supply System for Liquid Rocet Engine." Journal of the Korean Society for Propulsion Engineers, vol. 23, No. 3, pp. 119-126., 2019. 
  7. D. K. Choi, J. W. Choi, S. Y. Lee, and J. H. Roh, "A Study on Thermal-Structural Analysis of Common Bulkhead Propellant Tanks Using a Two-Dimensional Axisymmetric Numerical Model," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, pp. 83 84, November 2021. 
  8. Vietze, M., Weiland, S., & Mundt, C. "Quick design tool for stratification processes in cryogenic fuel tanks with focus on sandwich common bulkheads." In Proceedings of the 67th International Astronautical Congress, pp. 26-30 2016. 
  9. S. Sumith, and R. Ramesh Kumar, "Thermo-structural analysis of cryogenic tanks with common bulkhead configuration," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 236, no. 5, pp. 900-909, June 2021.
  10. W.E. Dean, "Saturn S- II Problem Resolution History Report," North American Rockwell, SD 71-256, 1971.
  11. M. Kang, J. Kim, H. You & D. Chang, "Experimental investigation of thermal stratification in cryogenic tanks." Experimental Thermal and Fluid Science, 96, pp. 371-382. 2018.
  12. S. Y. Kim, choi & D K. "Hydrogen Liquid, Storage technology and application", The Korean Hydrogen and New Energy Society, vol. 12 , no. 2, pp 87-102 ,2018.
  13. S. M. Tak, J. W. Park, M. K. Kang, D. J. Park, J. S. Lee, and S. S. Lee, "Transient heat transfer analysis of inertial measurement devices by outside frictional heat," Journal of Aerospace System Engineering, vol. 4, no. 1, pp. 32-37, March 2010.
  14. J. Y. Yang, G. H. Lee, S. W. Kim, S. Y. Lee, "Transient Heat Transfer Analysis of Small Launch Vehicle Common Bulkhead Propellant Tank with Different Insulation Thickness," Journal of Aerospace System Engineering, vol.18, No.3, pp.70-75, 2024.
  15. Korea Aerospace Research Institute, "Common Bulkhead Propellant Tank Development Specification," SPPO-SP-LV1-001, Ver. B, 2022.