• 제목/요약/키워드: Inside diameter

검색결과 742건 처리시간 0.039초

반사경 배치 및 흡수기 형상에 따른 접시형 태양열 집열기의 열손실 해석 (Analysis of Heat Loss with Mirror Array and Receiver Shapes on the Dish Solar Collector)

  • 서주현;마대성;김용;강용혁;서태범
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.35-41
    • /
    • 2008
  • The radiative heat loss from a receiver of a dish solar collector is numerically investigated. The dish solar collector considered in this paper consists of a receiver and multi-faceted mirrors. In order to investigate the performance comparison of dish solar collectors, six different mirror arrays and four different receivers are considered. A parabolic- shaped perfect mirror of which diameter is 1.40 m is considered as the reference for the mirror arrays. The other mirror arrays which consist of twelve identical parabolic-shaped mirror facets of which diameter are 0.405 m are suggested for comparison. Their reflecting areas, which are 1.545 $m^{2}$, are the same. Four different receiver shapes are a conical, a dome, a cylindrical, and a unicorn type. The radiative properties of the mirror surfaces and the receiver surfaces may vary the thermal performance of the dish solar collector so that various surface properties are considered. In order to calculate the radiative heat loss in the receiver, two kinds of methods are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. The collector efficiency is defined as the results of the optical efficiency and the receiver efficiency. Based on the calculation, the unicorn type has the best performance in receiver shapes and the STAR has the best performance in mirror arrays except the perfect mirror.

농촌지역 혼합건설폐기물의 중·소규모 배출현장용 이동식 분리선별기 개발을 위한 기초연구 (A Basic Study on the Mobile Separator and Sorter Development of Small and Medium-sized Discharge Site's Mixed Construction Waste in Rural Area)

  • 김병윤;박지선
    • 한국농촌건축학회논문집
    • /
    • 제21권3호
    • /
    • pp.17-24
    • /
    • 2019
  • This study aimed to develop a mobile separating and sorting device for discharge sites to separate and sort mixed construction waste generated in small and medium scale in small provincial cities into inorganic materials and combustible materials. The study results can be summarized as follows: 1) As a result of analyzing the existing domestic technology for the separating and sorting mixed construction waste, a device sorting the waste by fusing the vibration screen, disc screen, air blowing methods and the separating and sorting the combustible waste is applied in Korea. 2) In foreign countries, the air blowing, screen, gravity sorters are used for separating and sorting combustible waste in the same way as in Korea. Especially German T Company suggests a construction waste separating and sorting system using an optical sorter. 3) As for the test device for separating and sorting mixed construction waste to be buried in landfill, the processing capacity was set as 16 tons per day. 4) For separating and sorting inorganic materials by granularity, this study set a trommel with two types of diameter as a basic. To operate the mobile all-in-one system, the device is designed to locate a conveyor, a combustible waste conveying device, inside of the trommel. 5) The device is designed in a mobile mode under the concept of primary separating and sorting device, and it can be transported using a 2.5-ton truck minimum. The diameter and length of the trommel are designed to be within 1500mm and 3000mm, respectively. In a further study, an optimized separating and sorting technology is planned to be presented through an experimental study for processing efficiency analysis at the mixed construction waste site by manufacturing the pilot experiment facility reflecting the design elements in the result of this study.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

NATM 터널의 굴착면 전방 지질 평가를 위한 대구경 심발공 탐사 시스템 개발 및 적용 사례 (Development and Application of Large-diameter Cut-hole Exploration System for Assessment of the Geological Condition beyond NATM Tunnel Face)

  • 김민성;정진혁;이제겸;박민선;박정현;이승원
    • 터널과지하공간
    • /
    • 제31권1호
    • /
    • pp.1-9
    • /
    • 2021
  • 최근 도시화가 가속화됨에 따라 지하공간 개발을 위한 굴착공사가 지속적으로 이루어지고 있으며, 암반 굴착 시 해당 구간의 지질 상태를 정확히 파악하는 것은 안전한 시공을 위해 매우 중요하다. 본 논문에서는 터널 발파 진동을 저감시키기 위해 대구경 무장약공을 천공하는 MSP 공법을 활용하여 굴착면 전방의 지질 특성을 파악하기 위해 천공경로 및 지반탐사 복합시스템을 개발하였다. 제안된 탐사 시스템은 NATM 터널 공사를 위해 천공된 대구경 심발공을 활용해 굴착면 전방 50 m 구간의 지질 정보를 획득할 수 있다는 큰 장점이 있다. 또한, 제안된 탐사 시스템을 현장에 적용하고 대구경 무장약공 내부를 모니터링하여 터널 굴착면 전방의 지질 상태를 평가한 사례를 소개한다.

Influence of loading method and stiffening on the behavior of short and long CFST columns

  • Shaker, Fattouh M.F.;Ghanem, Gouda M.;Deifalla, Ahmed F.;Hussein, Ibrahim S.;Fawzy, Mona M.
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.295-307
    • /
    • 2022
  • The objective of this research is to study experimentally the behavior of stiffened steel tubes (CFSTs). Considered parameters are stiffening methods by through-bolts or shear connectors with different configurations. In addition, the effect of global (ratio between length to diameter) and local (proportion between diameter to thickness) slenderness ratios are investigated. Load application either applied on steel only or both steel and concrete is studied as well. Case of loading on steel only happens when concrete inside the column shrinks. The purpose of the research is to improve the behavior of CFSTs by load transfer between them and different stiffening methods. A parametric experimental study that incorporates thirty-three specimens is carried out to highlight the impact of those parameters. Different outputs are recorded for every specimen such as load capacities, vertical deflections, longitudinal strains, and hoop strains. Two modes of failure occur, yielding and global buckling. Shear connectors and through-bolts improve the ultimate load by up to 5% for sections loaded at steel with different studied global slenderness and local slenderness equal 63.5. Meanwhile, shear connectors or through bolts increase the ultimate load by up to 6% for global slenderness up to 15.75 for sections loaded on composite with local slenderness equals 63.50. Recommendations for future design code development are outlined.

Synthesis of Hyaluronic Acid Microsphere Crosslinked with Polyethylene Glycol Diglycidyl Ether Prepared by A Simple Fluidic Device

  • Yuk, Sujeong;Jeong, Dayeon;Lee, Yongjun;Lee, Deuk Yong
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권6호
    • /
    • pp.251-258
    • /
    • 2021
  • Hyaluronic acid (HA) microspheres (MSs) crosslinked with polyethylene glycol diglycidyl ether (PEGDE) are prepared using a simple fluidic device (SFD) to investigate the optimized parameters. A solution mixture of PEGDE in 2-methyl-1-propanol was prepared as a continuous phase in SFD. HA solutions of 1 wt% concentration were introduced into SFD as a discontinuous phase. The HA solution prepared by stirring for more than 48 h exhibited spherical MSs at the needle tip inside the ring cap. As the flow rate of the continuous phase increased from 0.7 to 1.9 mL/min, the diameter of the MS decreased from 173±36 ㎛ to 129±13 ㎛. Although the PEGDE concentration in the range of 0.2 to 1.8 vol% did not affect the diameter of the MS, the microstructure of MS, consisting of inner hollow void and wall, was changed. The inner void and wall size decreased and increased from 79.5 ㎛ to 57.2 ㎛ and from 10.3 ㎛ to 21.4 ㎛, respectively, with increasing PEGDE concentration from 0.2 vol% to 1.8 vol%. FT-IR peaks located around 2867 cm-1 and 1088 cm-1 indicated that the HA MS prepared at different PEGDE concentrations were chemically crosslinked. The HA MSs containing different PEGDE concentrations exhibited quantitative cell viability of more than 98%. L-929 cells adhered well to the HA MSs and proliferated continuously with increasing culture time to 48 h regardless of PEGDE concentration, implying that the HA MSs are clinically safe and effective.

CONSTRUCTION MANAGEMENT OF TUNNELLING IN SEVERE GROUNDWATER CONDITION

  • Young Nam Lee;Dae Young Kim
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.655-661
    • /
    • 2005
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3 km upstream of the powerhouse and headrace tunnel of 20 km in length and penstock of 440 m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site; the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20 bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflow raised the water level inside tunnel to 70 cm, 17% of tunnel diameter (3.9 m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made for the excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

상대습도에 따른 비산 미세먼지의 크기 분포 및 특성 분석 (Study on size distribution and characteristics of particulate matter suspension in indoor space depending on relative humidity)

  • 김민정;박지원
    • 한국입자에어로졸학회지
    • /
    • 제20권2호
    • /
    • pp.25-33
    • /
    • 2024
  • Suspension of particulate matter (PM) in indoor spaces, which increases risk of negative impact on occupants' health from exposure to PM, is influenced by humidity level in the indoor environment. The goal of this study is to investigate the property of size-resolved PM suspension in accordance with the relative humidity through simulation chamber experiments which reflect the indoor environmental characteristics. The relative humidity of simulation chamber is adjusted to 35%, 55% and 75% by placing it inside a real-size environmental chamber which allows artificial control of climatic conditions (e.g., temperature, humidity). At the respective humidity conditions, PM suspension concentration caused by occupant walking is analyzed by particle size (0.5-0.8, 0.8-1.0, 1.0-2.5, 2.5-3.5, 3.5-4.5, 4.5-5.5, 5.5-8.0, and 8.0-10 ㎛). Irrespective of the particle size, the suspension concentration reveals a decreasing tendency as the relative humidity increases. Furthermore, a one-way analysis of variance (one-way ANOVA) test statistically verifies that the suspension concentration has a significant difference depending on the indoor relative humidity level. In addition, as the relative humidity increases, a proportion of the suspended particles with 0.5-2.5 ㎛ diameter decreases, while that with 2.5-3.5 ㎛ diameter increases. The reason is considered that the humidity has an effect on adhesion and coagulation forces of the particles.

SEM파일의 이완하중 산정방법별 이완하중량 비교 연구 (A study on the comparison by the methods of estimating the relaxation load of SEM-pile)

  • 김형규;박은형;조국환
    • 한국터널지하공간학회 논문집
    • /
    • 제20권3호
    • /
    • pp.543-560
    • /
    • 2018
  • 도심지 지하공간의 개발과 운행선 하부를 저토피로 입체 교차화하는 시설 증가에 따라 비개착식 공법의 수요는 점차 증가추세에 있으나 대다수의 공법은 중대구경 강관을 압입하여 루프를 형성하고 내부를 굴착하는 파이프루프(Pipe roof) 계열의 공법이 주로 적용되고 있다. 강관 압입 시 발생되는 이완영역 및 하중은 여러 인자의 영향을 받게 되나 가장 큰 요소는 압입하는 강관의 크기에 좌우되며 이는 강관 루프 내 지중구조물에 작용하는 하중의 크기로 볼 수 있다. 지반의 교란 및 이완하중 발생을 최소화시키기 위해 개발된 SEM공법(Super Equilibrium Method)은 기존의 중대구경 강관 대신 ${\Phi}114mm$ 내외의 소구경 강관을 사용한다. 이 소구경 강관을 SEM파일로 명명하였으며 강관의 선 압입 및 그라우팅 보강을 실시한 후 지반의 침하나 융기 없이 지반 내 횡단구조물을 유압잭을 이용하여 압입하게 된다. 이와 같이 SEM공법의 구성 중 지보역할을 하는 SEM파일은 선단부 굴착 시 지반의 붕락을 방지하고 상재하중을 지지하기 위한 길이 5 m 내외의 Fore poling 파일이며 이 파일의 배치간격, 시공연장, 부재의 강성 등을 산정하기 위해서는 이완영역의 적절한 산정이 필수적이다. 본 논문은 SEM공법의 최적설계를 위하여 SEM파일 압입 시 발생되는 이완하중 산정 값을 비교분석하였다. 이완영역 산정에 근거한 주요 이론식 및 경험식들의 영향인자를 고려하여 분석하고 FEM analysis (유한요소 해석)를 수행하여 SEM파일에 적합한 이완하중 산정을 검토하였다. 또한 실제 SEM파일 압입 및 굴착 시 발생되는 지반이완을 확인하기 위해 강관압입 축소모형실험을 수행하였으며 토피고/강관(H/D)에 따른 지표침하 및 지반이완을 정량적으로 검토하였다.

GMR-SV 박막내 미크론 크기의 홀 형성을 이용한 교환결합세기와 보자력 특성연구 (Properties of Exchange Bias Coupling Field and Coercivity Using the Micron-size Holes Formation Inside GMR-SV Film)

  • 벌러르마;카지드마;황도근;이상석;이원형;이장로
    • 한국자기학회지
    • /
    • 제25권4호
    • /
    • pp.117-122
    • /
    • 2015
  • 고감도 바이오센서용 거대자기저항-스핀밸브(Giant magnetoresistance-spin valve; GMR-SV) 박막소자의 미세패턴 공정으로 인한 교환결합력과 보자력 약화 문제를 해결하고자 전자사이크로트론 공명(Electron Cyclotron Resonance) Ar-이온 밀링을 이용하여 GMR-SV 박막에 지름 $35{\mu}m$인 원형 모양의 홀(Hole)을 패턴닝 하였다. GMR-SV를 4-단자법으로 측정한 자기저항 곡선으로부터 홀 개수가 많아질수록 자기저항비와 자장감응도는 홀이 없을 때 측정된 초기값과 같은 값을 유지하였고, 교환결합세기와 보자력은 120 Oe에서 190 Oe, 10 Oe에서 41 Oe로 크게 향상되었다. 이러한 현상은 GMR-SV 박막내의 자화용이축과 같은 방향을 띄고 센싱 전류의 방향과 수직인 공간에 위치하는 용이 자구영역(Easy magnetic domain; EMD)의 역할에 기인하는 결과를 보여주었다. GMR-SV 바이오 소자 제작시 폭을 넓게 하고 소자내부에 홀의 개수를 증가시켜 발생하는 EMD 효과가 자기저항특성을 향상시킬 수 있었다.