DOI QR코드

DOI QR Code

Properties of Exchange Bias Coupling Field and Coercivity Using the Micron-size Holes Formation Inside GMR-SV Film

GMR-SV 박막내 미크론 크기의 홀 형성을 이용한 교환결합세기와 보자력 특성연구

  • Bolormaa, Munkhbat (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Khajidmaa, Purevdorj (Department of Oriental-western Biomedical Engineering, Sangji University) ;
  • Hwang, Do-Guwn (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Won-Hyung (Department of Physics, Penn State University) ;
  • Rhee, Jang-Roh (Department of Nanophysics, Sookmyung Women's University)
  • 벌러르마 (상지대학교 보건과학대학 한방의료공학과) ;
  • 카지드마 (상지대학교 대학원 동서의료공학과) ;
  • 황도근 (상지대학교 보건과학대학 한방의료공학과) ;
  • 이상석 (상지대학교 보건과학대학 한방의료공학과) ;
  • 이원형 (펜실베이아 주립대학교 물리학과) ;
  • 이장로 (숙명여자대학교 나노물리학과)
  • Received : 2015.06.05
  • Accepted : 2015.06.18
  • Published : 2015.08.31

Abstract

The holes with a diameter of $35{\mu}m$ inside the GMR-SV (giant magnetoresistance-spin valve) film were patterned by using the photolithography process and ECR (electron cyclotron resonance) Ar-ion milling. From the magnetoresistance curves of the GMR-SV film with holes measuring by 4-electrode method, the MR (magnetoresistance ratio) and MS (magnetic sensitivity) are almost same as the values of initial states. On other side hand, the $H_{ex}$ (exchange bias coupling field) and $H_c$ (coercivity) dominantly increased from 120 Oe and 10 Oe to 190 Oe and 41 Oe as increment of the number of holes inside GMR-SV film respectively. These results were shown to be attributed to major effect of EMD (easy magnetic domian) having a region positioned between two holes perpendicular to the sensing current. On the basis of this study, the fabrication of GMR-SV applying to the hole formation improved the magnetoresistance properties having the thermal stability and durability of bio-device.

고감도 바이오센서용 거대자기저항-스핀밸브(Giant magnetoresistance-spin valve; GMR-SV) 박막소자의 미세패턴 공정으로 인한 교환결합력과 보자력 약화 문제를 해결하고자 전자사이크로트론 공명(Electron Cyclotron Resonance) Ar-이온 밀링을 이용하여 GMR-SV 박막에 지름 $35{\mu}m$인 원형 모양의 홀(Hole)을 패턴닝 하였다. GMR-SV를 4-단자법으로 측정한 자기저항 곡선으로부터 홀 개수가 많아질수록 자기저항비와 자장감응도는 홀이 없을 때 측정된 초기값과 같은 값을 유지하였고, 교환결합세기와 보자력은 120 Oe에서 190 Oe, 10 Oe에서 41 Oe로 크게 향상되었다. 이러한 현상은 GMR-SV 박막내의 자화용이축과 같은 방향을 띄고 센싱 전류의 방향과 수직인 공간에 위치하는 용이 자구영역(Easy magnetic domain; EMD)의 역할에 기인하는 결과를 보여주었다. GMR-SV 바이오 소자 제작시 폭을 넓게 하고 소자내부에 홀의 개수를 증가시켜 발생하는 EMD 효과가 자기저항특성을 향상시킬 수 있었다.

Keywords

References

  1. J. M. Daughton, J. Magn. Magn. Mater. 192, 334 (1999). https://doi.org/10.1016/S0304-8853(98)00376-X
  2. H. Kim, V. Reddy, K. W. Kim, I. Jeong, X. H. Hu, and C. G. Kim, J. Magn. 19, 10 (2014). https://doi.org/10.4283/JMAG.2014.19.1.010
  3. G. Li, S. Sun, R. J. Wilson, R. L. White, N. Pourmand, and S. X. Wang, Sens. Actuators. A Phys. A126, 98 (2006).
  4. B. M. de Boer, J. A. H. M. Kahlman, T. P. G. H. Jansen, H. Duric, and J. Veen, Biosens. Bioelectron. 22, 2366 (2006).
  5. K. Yosida, Phys. Rev. 106, 893 (1957). https://doi.org/10.1103/PhysRev.106.893
  6. D. K. Wood, K. K. Ni, D. R. Schmidt, and A. N. Cleland, Sens. Actuators. A Phys. A120, 1 (2005).
  7. J. G. Choi, D. G. Hwang, J. R. Rhee, and S. S. Lee, Thin Solid Films 519, 8394 (2011). https://doi.org/10.1016/j.tsf.2011.03.103
  8. P. Khajidmaa and S. S. Lee, J. Korean Magn. Soc. 23, 193 (2013). https://doi.org/10.4283/JKMS.2013.23.6.193
  9. Y. J. Nam, T. Y. Lee, and S. H. Lim, J. Magn. 19, 232 (2014). https://doi.org/10.4283/JMAG.2014.19.3.232
  10. W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magn. 14, 18 (2009). https://doi.org/10.4283/JMAG.2009.14.1.018
  11. D. W. Kim, J. H. Lee, M. J. Kim, and S. S. Lee, J. Magn. 14, 80 (2009). https://doi.org/10.4283/JMAG.2009.14.2.080
  12. S. H. Park, K. S. Soh, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Magn. 13, 30 (2008). https://doi.org/10.4283/JMAG.2008.13.1.030
  13. J. G. Choi, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Kor. Phys. Soc. 6, 1954 (2013).
  14. J. G. Choi, K. J. Park, and S. S. Lee, J. Magn. 17, 214 (2012). https://doi.org/10.4283/JMAG.2012.17.3.214
  15. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). https://doi.org/10.1103/PhysRev.96.99
  16. P. Bruno and C. Chappert, "Magnetism and Structure in Systems of Reduced Dimension", p389-p399, Edited by R. F. C. Farrow et al., Plenum Press, New York (1993).
  17. S. S. Lee and D. G. Hwang, J. Magn. 15, 17 (2010). https://doi.org/10.4283/JMAG.2010.15.1.017

Cited by

  1. Fabrication and Performance of Electron Cyclotron Resonance Ion Milling System for Etching of Magnetic Film Device vol.25, pp.5, 2015, https://doi.org/10.4283/JKMS.2015.25.5.149
  2. Distribution of Magnetic Field Depending on the Current in the μ-turn Coil to Capture Red Blood Cells vol.25, pp.5, 2015, https://doi.org/10.4283/JKMS.2015.25.5.162