• Title/Summary/Keyword: Inorganic compounds

Search Result 399, Processing Time 0.03 seconds

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Studies on the Physiological Chemistry of Seed Development in Ginseng Seed (인삼식물의 종자발육 과정에 있어서의 생리화학적 연구)

  • Hee-Chun Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.115-133
    • /
    • 1974
  • This study was done on the metabolism of chemical components during the seed development of ginseng. The changes of the chemical components were inspected in the following periods: from the early stage of flower organ formation to flowering time, from the early stage of fruiting to maturity, during the moisture stratification before sowing. From flower bud forming stage to meiosis stage, the changes in the fresh weight, dry weight, contents of carbohydrates, and contents of nitrogen compounds were slight while the content of TCA soluble phosphorus and especially the content of organic phosphorus increased markedly. From meiosis stage to microspore stage the fresh and dry weights increase greatly. Also, the total nitrogen content increases in this period. Insolub]e nitrogen was 62-70% of the total nitrogen content; the increase of insoluble nitrogen seems to have resulted form the synthesis of protein. The content of soluble sugar (reducing and non-reducing sugar) increases greatly but there was no observable increase in starch content. In this same period, TCA soluble phosphorus reached the maximum level of 85.4% of the total phosphorus. TCA insoluble phosphorus remained at the minimum content level of 14.6%. After the pollen maturation stage and during the flowering period the dry weight increased markedly and insolub]e nitrogen also increased to the level of 67% of the total nitrogen content. Also in this stage, the organic phosphorus content decreased and was found in lesser amounts than inorganic phosphorus. A rapid increase in the starch content was also observed at this stage. In the first three weeks after fruiting the ginseng fruit grows rapidly. Ninety percent of the fresh weight of ripened ginseng seed is obtained in this period. Also, total nitrogen content increased by seven times. As the fruits ripened, insoluble nitrogen increased from 65% of the total nitrogen to 80% while soluble nitrogen decreased from 35% to 20%. By the beginning of the red-ripening period, the total phosphoric acid content increased by eight times and was at its peak. In this same period, TCA soluble phosphorus was 90% of total phosphorus content and organic phosphorus had increased by 29 times. Lipid-phosphorus, nucleic acid-phosphorus and protein-phosphorus also increased during this stage. The rate of increase in carbohydrates was similar to the rate of increase in fresh weight and it was observed at its highest point three weeks after fruiting. Soluble sugar content was also highest at this time; it begins to decrease after the first three weeks. At the red-ripening stage, soluble sugar content increased again slightly, but never reached its previous level. The level of crude starch increased gradually reaching its height, 2.36% of total dry weight, a week before red-ripening, but compared with the content level of other soluble sugars crude starch content was always low. When the seeds ripened completely, more than 80% of the soluble sugar was non-reducing sugar, indicating that sucrose is the main reserve material of carbohydrates in ginseng seeds. Since endosperm of the ripened ginseng seeds contain more than 60% lipids, lipids can be said to be the most abundant reserve material in ginseng seeds; they are more abundant than carbohydrates, protein, or any other component. During the moisture stratification, ginseng seeds absorb quantities of water. Lipids, protein and starch stored in the seeds become soluble by hydrolysis and the contents of sugar, inorganic phosphorus, phospho-lipid, nucleic acid-phosphorus, protein phosphorus, and soluble nitrogen increase. By sowing time, the middle of November, embryo of the seeds grows to 4.2-4.7mm and the water content of the seeds amounts to 50-60% of the total seed weight. Also, by this time, much budding material has been accumulated. On the other hand, dry stored ginseng seeds undergo some changes. The water content of the seeds decreases to 5% and there is an observable change in the carbohydraes but the content of lipid and nitrogen compounds did not change as much as carbohydrates.

  • PDF

Synthesis, Spectroscopic, and Biological Studies of Chromium(III), Manganese(II), Iron(III), Cobalt(II), Nickel(II), Copper(II), Ruthenium(III), and Zirconyl(II) Complexes of N1,N2-Bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide (N1,N2-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide의 크롬(III), 망간(II), 철(III), 코발트(II), 니켈(II), 구리(II), 루테늄(III) 및 산화 지르코늄(II) 착물에 대한 합성과 분광학 및 생물학적 연구)

  • Al-Hakimi, Ahmed N.;Shakdofa, Mohamad M.E.;El-Seidy, Ahemd M.A.;El-Tabl, Abdou S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.418-429
    • /
    • 2011
  • Novel chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), and zirconyl(II) complexes of $N^1,N^2$-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide ($H_4L$, 1) have been synthesized and characterized by elemental, physical, and spectral analyses. The spectral data showed that the ligand behaves as either neutral tridentate ligand as in complexes 2-5 with the general formula $[H_4LMX_2(H_2O)]{\cdot}nH_2O$ (M=Cu(II), Ni(II), Co(II), X = Cl or $NO_3$), neutral hexadentate ligand as in complexes 10-12 with the general formula $[H_4LM_2Cl_6]{\cdot}nH_2O$ (M=Fe(III), Cr(III) or Ru(III)), or dibasic hexadentate ligand as in complexes 6-9 with the general formula $[H_2LM_2Cl_2(H_2O)_4]{\cdot}nH_2O$ (M = Cu(II), Ni(II), Co(II) or Mn(II), and 13 with general formula $[H_4L(ZrO)_2Cl_2]{\cdot}8H_2O$. Molar conductance in DMF solution indicated the non-ionic nature of the complexes. The ESR spectra of solid copper(II) complexes 2, 5, and 6 showed $g_{\parallel}$ >g> $g_e$, indicating distorted octahedral structure and the presence of the unpaired electron in the $N^1,N^2$ orbital with significant covalent bond character. For the dimeric copper(II) complex $[H_2LCu_2Cl_2(H_2O)_4]{\cdot}3H_2O$ (6), the distance between the two copper centers was calculated using field zero splitting parameter for the parallel component that was estimated from the ESR spectrum. The antibacterial and antifungal activities of the compounds showed that, some of metal complexes exhibited a greater inhibitory effect than standard drug as tetracycline (bacteria) and Amphotricene B (fungi).

Optimization of Culture Conditions for D-Tagatose Production from D-Galactose by Enterobacter agglomerans. (Entrobacter agglomerans에 의한 D-Galactose로부터 D-Tagatose 생산조건의 최적화)

  • 오덕근;노회진;김상용;노봉수
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.250-256
    • /
    • 1998
  • D-Tagatose production from D-galactose was investigated using 35 type strains of American Culture Type Collection (ATCC) and Korean Collection for Type Cultures (KCTC) which have potential to produce D-tagatose. Enterobacter agglomerans ATCC 27987 was selected as a D-tagatose producing strain due to its short fermentation time and high production of D-tagatose. Optimization of the culture conditions for D-tagatose production by E. agglomerans ATCC 27987 was performed. Among various carbon sources, D-galactose was the most effective carbon source for D-tagatose production. As the D-galactose concentration was increased, cell growth and D-tagatose production increased. Effect of nitrogen sources on D-tagatose production was studied. Of inorganic nitrogen sources, ammonium sulfate was effective one for D-tagatose production and yeast extract was the most suitable organic nitrogen nutrient. The concentrations of inorganic compounds such as KH$_2$PO$_4$, K$_2$HPO$_4$, and MgSO$_4$$.$7H$_2$O were also optimized for D-tagatose production. The optimal medium was determined to contain D-galactose of 20 g/l, yeast extract of 5.0 g/l, (NH$_4$)$_2$SO$_4$ of 2.0 g/l, KH$_2$PO$_4$ of 5.0 g/l, K$_2$HPO of 5.0 g/l, and MgSO$_4$$.$7H$_2$O of 5 mg/l. The optimal environmental conditions in a 250-$m\ell$ flask were found to be pH of 6.0, temperature of 30$^{\circ}C$, and agitation speed of 150 rpm. D-tagatose of 0.41 g/l could be obtained in 24 h from 20 g/l D-galactose at the optimal culture condition without induction and cell concentration.

  • PDF

Physicochemical Characteristics of Ethanol Extracts from Each Part of the Pleurotus eryngii (새송이버섯(Pleurotus eryngii) 부위별 추출물의 이화학적 특성)

  • Ahn, Myung-Soo;Kim, Hyun-Jeung;Seo, Mi-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.3
    • /
    • pp.297-302
    • /
    • 2006
  • This study has examined the physicochemical properties of the Pleurotus eryngii, including their proximate components, amount mineral content, total dietary fiber, total sugar, reducing sugar and free sugar. Additionally, it measured the P. egii ethanol extracts and the total amounts of polyphenol compounds as well as its electron donating ability (EDA) of the substance fraction (SF). The P. eryngii powder's moisture content was 9.0% and each of the other element content such as carbohydrate, crude protein, crude ash and crude fat was found to be 63.06%, 20.70%, 5.20% and 2.0% respectively. Potassium (K) was shown to be the greatest inorganic content and manganese (Mn) was the lowest. Furthermore fructose, galactose, glucose lactose and maltose free sugar content was found in this order. 387 mg% of the total amounts of polyphenol was found in the P. eryngii whole body ethanol extract, 158 mg% in the stipe extract, 593 mg% in the pileus extract and 607 mg% in the substance fraction (SF). Electron donating ability (EDA) was highest at 91.12% in the whole body extract and lowest at 62.90% in the stipe extract. Additionally, the EDA for substance fraction (SF) 0.02%-0.1% was found to be 57.78-77.33%, which was lower than the 0.02%-tocopherol (93.92%) and BHT (96.72%). From these results, it can be assumed that P. eryngii offers superior antioxidative effects with its high content of fiber, inorganic materials and total amounts of polyphenol as well as high electron donating ability (EDA), thereby making it ideal for use in functional foods and industrial materials.

Red-Colored Phenomena and Morphochemical Characteristics of Red-Colored Substances in Ginseng Roots (Panax ginseng C.A. Meyer) (인삼 적변현상과 적변물질의 형태-화학적 특성)

  • 윤길영;양덕조
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.107-112
    • /
    • 2000
  • One of the physiologically important ginseng diseases is red-colored phenomena (RCP) that is caused by accumulation of red-colored substances on the epidermis of ginseng roots. Although RCP severely deteriorates the quality of ginseng products, there has been little information on what red-colored substance is and how RCP occurs. Therefore, the heavy losses of cultivators and ginseng industry are suffering by RCP, For this reason, we have investigated with the morphochernical characteristics of RCP to find out main cause of it. The red-colored substances (RS) on the epidermis of red-colored ginseng (RCG) were examined using inverted light microscope, confocal laser scanning microscope (CLSM)and furier transform infrared (FT/IR) spectrometer. Red brown substances were accumulated in the cell wall of the epidermis from early stage to late stage of RCC. Especially, cell wall of the late stage of RCG was covered with the sub-stances with 80~ 130 fm thick. Therefore, the cell wall of RCG cannot protect the ginseng root cells from the mechanical damages, bacteria and fungi. To analyse red substances of roots, RS were isolated from epidermis of RCG and extracted using various solvents. RS is strongly insoluble but it was bleached by oxidizing agents including 12% (v/v) NaOCl. Therefore, RS was Presumed to make up of high chelation power. The proriles of FT/IR spectra or both healthy ginseng (HEG) and RCG showed a significant difference at two wavelength,2857 cm$\^$-1/(C-H) and 1032 cm$\^$-1/(S=O), respectively. Furthermore, absorption peak of 2857cm$\^$-l/ appears on the only epidermis of RCG. The other peak is shown lower absorption rate on the epidermis of RCG than that of healthy ginseng. Also, FT/IR spectra of the mixture of carboxym-ethylcellulose (CMC) and iron (Fe$\^$3+/) were very similar to RCG spectrum profiles. One of a interesting fact is that the contents of phenolic compounds at the epidermis of healthy ginseng were highest. The results of these experiments sup-port the RCP was closely related with the chemical interaction between inorganic elements (Fe) of rhizosphere and organic matters (cellulose, cellobiose, cell sap, etc.) of ginseng roots.

  • PDF

Effects of Sodium Fluoride Exposure on the Stages of Amelogenesis and Ameloblast Modulation in Rat Incisors (흰쥐 절치의 법랑질형성과 법랑모세포 변환주기에 불소가 미치는 영향)

  • Jeong, Moon-Jin;Jeong, Soon-Jeong;Choi, Baik-Dong;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 2008
  • Effects of sodium fluoride exposure on the amelogenesis during fetal formation were investigated using 11 days rat incisor of control group and two experimental groups. According to results of morphological analysis using an electron microscope, enamel organ in the rat incisor consisted of presecretory, secretory, and maturation zone, especially maturation zone had ruffle-ended ameloblasts (rAB) that additionally supply inorganic ions and smooth-ended ameloblasts (sAB) that remove water and organic compounds. Such a histological composition was same in fetal and adult rats. According to experimental results using calcein (green fluorescence) in order to reveal the modulation cycle of ameloblast, modulation cycle of experimental group decreased on an average one time than control group, as increase of density of sodium fluoride indicated that thickness of smooth-ended ameloblast decreased. Also ratio of thickness on sagittal total length of sAB increased than rAB in experimental groups than control group. In total length of teeth, an injected 100 ppm sodium fluoride group was similar control group but as injected 200 ppm group became short. In experimental group, thickness of sAB and rAB became narrow to the tip of cutting edge. According to concentration of sodium fluoride grows, the modulation cycle and total length of teeth were decreased, finally it prevented teeth growth.

  • PDF

Development of Light-weight Fire Protection Materials Using Fly Ash and Light-weight Aggregate (플라이애시 및 경량골재를 활용한 경량 내화성 마감재료 개발)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • The serious issue of tall building is to ensure the fire resistance of high strength concrete. Therefore, Solving methods are required to control the explosive spalling. The fire resistant finishing method is installed by applying a fire resistant material as a light-weight material to structural steel and concrete surface. This method can reduce the temperature increase of the reinforcement embedded in structural steel and concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of light-weight fire protection material compounds including the inorganic admixture such as fly ash, meta-kaolin and light-weight aggregate as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. Also, this paper is concerned with change in microstructure and dehydration of the light-weight fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM and XRD. The study results show that the light-weight fire resistant finishing material composed of fly ash, meta-kaolin and light-weight aggregate has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Developed light-weight fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF

Water Quality Changes in Wastewater Effluent from the Unsaturated and Saturated Soil Aquifer Treatment(SAT) Columns Simulating Shallow Aquifer (얕은 불포화 및 포화 대수층을 모사한 SAT 토양칼럼에서의 하수처리장 방류수 처리 수질 변화)

  • Cha Woo-Suk;Kim Jung-Woo;Choi Hee-Chul;Won Jong-Ho;Kim In-Soo;Cho Jae-Weon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.18-24
    • /
    • 2005
  • Water quality changes of wastewater effluent in the shallow aquifier condition was investigated using laboratory unsaturated and saturated SAT columns for over five months. Average DOC removal was 31.9% in the unsaturated SAT column whereas no removal occurred in the saturated SAT column. Under the shallow aquifer condition, nitrification was not completed in the unsaturated SAT column, releasing residual ammonium nitrogen into the saturated SAT column. Short retention time (one day) in the shallow unsaturated SAT column rendered DO of about 2 mg/L to the influent of the saturated SAT column. Phosphate was not removed at all in the unsaturated SAT column while complete removal was achieved in the saturated column. Consequently, organic and inorganic compounds were removed under the shallow aquifer condition as effectively as was in deep aquifer, except for the release of ammonium and relatively high DO into the saturated SAT column.

Leakage of Seed Reserve Nutrient in Artificially Aged Pepper Seeds and Enhancement of Seed Vigor by Priming (노화처리된 고추종자의 저장성분 누출과 priming 처리가 종자활력 증진에 미치는 영향)

  • Kang Jum-Soon;Choi In-Soo
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.352-356
    • /
    • 2006
  • Quantity of protein, amino acid, and sugar leaked from seeds was greater as the viability of seeds was dropped by the time elapsed of seed aging treatment. In the seeds with the artificial aging treatment for 20 days, 35.8 mg of protein was leaked on the 4th day after soaking, which was 6.9 times higher than that of control. Leakage of amino acid was also higher from low quality seeds treated with the aging treatment. In the seeds with the aging treatment for 20 days, $36.5{\mu}g$ fig of sugar was leaked on the 4th day after soaking, which was 2.8 times higher than that of control. The leakage of inorganic compound was higher from the low quality seeds, and leakage of total protein, amino acid, and sugar. According to .the quantity of leakage, water soluble compounds, which can be used for the assessment of seed quality without any destruction, were protein and potassium. Germination rate and percentage of seeds were dropped with the seed aging treatment, and the seed viability could be recovered by priming treatment. This phenomenon was very clear when the low quality seeds were germinated at low temperature.