• 제목/요약/키워드: Innate immune

Search Result 549, Processing Time 0.03 seconds

Effect of Dietary Brown Seaweed Levels on the Antioxidant System in Broiler Chicks Activated Innate Immune Response (미역의 급여 수준이 타고난 면역반응이 활성화한 육계병아리의 혈액 항산화 균형에 미치는 영향)

  • Lee, H.J.;Park, I.K.;Im, J.T.;Choi, D.Y.;Choi, C.J.;Choi, J.B.;Lee, H.G.;Choi, Y.J.;Koh, T.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2005
  • Effect of dietary brown seaweed(Undaria pinnatifida) levels on the anti-oxidant enzyme system was evaluated in blood of broiler chicks activated innate immune response. Day-old broiler chicks were fed diets containing 0.0(basal), 1.0, 2.0 and 4.0 % of brown seaweed for 4 weeks. The innate immune response was activated by injecting Salmonella typhymurium lipopolysaccharide(LPS) i.p. at 8, 10 and 12 day of age. The activation of innate immune response enhanced(p< 0.01) and the brown seaweed 1.0 and 2.0 % diets reduced(P< 0.05) the superoxide dismutase(SOD) activity in erythrocyte cytosol significantly. The activation of innate immune response elevated significantly the levels of peroxide and the activity of peroxidase in plasma, while the levels of dietary brown seaweed resulted in a significant linear increase in peroxidase activity in plasma of normal bird. Experience of the innate immune response in 4 week-old chicks reduced linearly the plasma level of peroxide with the level of brown seaweed and enhanced the plasma peroxidase activity. Also, the plasma of normal birds fed the brown seaweed showed higher level of peroxide and lower activity of peroxidase. The results indicated that dietary brown seaweed affected SOD and peroxidase activities in blood of broiler chicks during activation of innate immune response.

Recent advance in primary immune deficiency disorders (일차성 면역결핍질환의 최신 지견)

  • Kang, Hyoung-Jin;Shin, Hee Young;Ahn, Hyo Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.6
    • /
    • pp.649-654
    • /
    • 2009
  • The immune system is comprised of cells and molecules whose collective and coordinated response to the introduction of foreign substance is referred to as the immune response. Defense against microbes is mediated by the early reaction (innate immunity) and the late response (adaptive immunity). Innate immunity consists of the epithelial barrier, phagocytes, complement and natural killer cells. Adaptive immunity, a more complex defense reaction, consists of activation of later-developed lymphocytes that, when stimulated by exposure to infectious agents, increase in magnitude and defensive capabilities with each successive exposure. In this review we discuss recent advances in important primary immune deficiency disorders of innate immunity (chronic granulomatous disease, leukocyte adhesion deficiency) and adaptive immunity (severe combined immune deficiency, Wiskott- Aldrich syndrome).

Emerging roles of neutrophils in immune homeostasis

  • Lee, Mingyu;Lee, Suh Yeon;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.473-480
    • /
    • 2022
  • Neutrophils, the most abundant innate immune cells, play essential roles in the innate immune system. As key innate immune cells, neutrophils detect intrusion of pathogens and initiate immune cascades with their functions; swarming (arresting), cytokine production, degranulation, phagocytosis, and projection of neutrophil extracellular trap. Because of their short lifespan and consumption during immune response, neutrophils need to be generated consistently, and generation of newborn neutrophils (granulopoiesis) should fulfill the environmental/systemic demands for training in cases of infection. Accumulating evidence suggests that neutrophils also play important roles in the regulation of adaptive immunity. Neutrophil-mediated immune responses end with apoptosis of the cells, and proper phagocytosis of the apoptotic body (efferocytosis) is crucial for initial and post resolution by producing tolerogenic innate/adaptive immune cells. However, inflammatory cues can impair these cascades, resulting in systemic immune activation; necrotic/pyroptotic neutrophil bodies can aggravate the excessive inflammation, increasing inflammatory macrophage and dendritic cell activation and subsequent TH1/TH17 responses contributing to the regulation of the pathogenesis of autoimmune disease. In this review, we briefly introduce recent studies of neutrophil function as players of immune response.

Infection and Innate Immunityi (감염과 선천면역)

  • Oh, Moo-Young
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.11
    • /
    • pp.1153-1161
    • /
    • 2005
  • As known by other name(natural immunity), the innate immune system comprises all those mechanisms for dealing with infection that are constitutive or built in, changing little with age or with experience of infection. Though in some ways less sophisticated than adaptive immunity, innate immunity should not belittled, since it has evidently protected thousands of species of invertebrates sufficiently to survive for up to 2 billion years. In the innate immune system, molecules of both cellular and humoral types are involved, corresponding to the need to recognize and dispose of different types of pathogen, to promote inflammatory responses and to interact to the adaptive immune system. A major features of innate immunity are the presence of the normal gut flora, complements, macrophages, dendritic cells, natural killer cells and many cytokines that can block the establishment of infection. Both phagocytic cells and complement system have tremendous potential for damaging host cells, but fortunately they are normally only triggered by foreign materials, and usually most of their destructive effects are focussed on the surface of these or in the safe environment of the phagolysosome. This article addreses the comprehensive mechanisms of the major components of the innate immune system to prevent the infection.

Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies

  • Lee, Hye-Ra;Choi, Un Yung;Hwang, Sung-Woo;Kim, Stephanie;Jung, Jae U.
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.777-782
    • /
    • 2016
  • The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

Expression of Perforin Gene for Early Development of Nephrons in Olive Flounder (Paralichthys olivaceus)

  • Yang, Hyun;Lee, Young Mee;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.321-327
    • /
    • 2013
  • The innate immune system is the only defense weapon that invertebrates have, and it is the fundamental defense mechanism for fish. The innate immune response is important in newly hatched flounders because it is closely involved in the initial feeding phase, which is why it is essential for survival during the juvenile period. The expression analysis of genes involved in the innate immune response in the olive flounder (Paralichthys olivaceus) in the days after hatching is incomplete. Therefore, we have begun to examine the expression patterns of genes specifically induced during the development of the innate immune system in newly hatched flounders. Microscopic observation showed that pronephron formation corresponded with the expression of perforin-encoding gene. These results suggest that perforin plays a vital role in the innate immunity of the kidney during developmental stages. Perforin expression was strong at the start of the development of the innate immune response, and continued throughout all the development stages. Our findings have important implications with respect to perforin's biological role and the evolution of the first defense mechanisms in olive flounder. Further studies are required to elucidate the perforin-mediated innate immunity response and to decipher the functional role of perforin in developmental stages.

Toll-like Receptors in Host Defense and Immune Disorders

  • Lee, Joo-Y.
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.97-105
    • /
    • 2007
  • Toll-like receptors (TLRs) playa crucial role in initiating and regulating innate and adaptive immune responses by detecting invading microbial pathogens. TLRs can also respond to non-microbial molecules derived from damaged tissue. Accumulating evidence suggests that deregulation of TLRs results in the dysfunction of immune system and ultimately increases the risk of many immune and inflammatory diseases including infectious diseases, allergy, and autoimmune diseases. Therefore, understanding how the immune system is controlled by TLRs will provide new insight to find the way to prevent or treat infectious diseases and immune disorders.

The Roles of Innate Lymphoid Cells in the Development of Asthma

  • Woo, Yeonduk;Jeong, Dongjin;Chung, Doo Hyun;Kim, Hye Young
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.171-181
    • /
    • 2014
  • Asthma is a common pulmonary disease with several different forms. The most studied form of asthma is the allergic form, which is mainly related to the function of Th2 cells and their production of cytokines (IL-4, IL-5, and IL-13) in association with allergen sensitization and adaptive immunity. Recently, there have been many advances in understanding non-allergic asthma, which seems to be related to environmental factors such as air pollution, infection, or even obesity. Cells of the innate immune system, including macrophages, neutrophils, and natural killer T cells as well as the newly described innate lymphoid cells, are effective producers of a variety of cytokines and seem to play important roles in the development of non-allergic asthma. In this review, we focus on recent findings regarding innate lymphoid cells and their roles in asthma.

MiR-146 and miR-125 in the regulation of innate immunity and inflammation

  • Lee, Hye-Mi;Kim, Tae Sung;Jo, Eun-Kyeong
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.311-318
    • /
    • 2016
  • Innate immune responses are primary, relatively limited, and specific responses to numerous pathogens and toxic molecules. Protein expression involved in these innate responses must be tightly regulated at both transcriptional level and post-transcriptional level to avoid the development of excessive inflammation that can be potentially harmful to the host. MicroRNAs are small noncoding RNAs (∼22 nucleotides [nts]) that participate in the regulation of numerous physiological responses by targeting specific messenger RNAs to suppress their translation. Recent work has shown that several negative regulators of transcription including microRNAs play important roles in inhibiting the exacerbation of inflammatory responses and in the maintenance of immunological homeostasis. This emerging research area will provide new insights on how microRNAs regulate innate immune signaling. It might show that dysregulation of microRNA synthesis is associated with the pathogenesis of inflammatory and infectious diseases. In this review, we focused on miR-146 and miR-125 and described the roles these miRNAs in modulating innate immune signaling. These microRNAs can control inflammatory responses and the outcomes of pathogenic infections.

Understanding the Roles of Host Defense Peptides in Immune Modulation: From Antimicrobial Action to Potential as Adjuvants

  • Ju Kim;Byeol-Hee Cho;Yong-Suk Jang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.288-298
    • /
    • 2023
  • Host defense peptides are expressed in various immune cells, including phagocytic cells and epithelial cells. These peptides selectively alter innate immune pathways in response to infections by pathogens, such as bacteria, fungi, and viruses, and modify the subsequent adaptive immune environment. Consequently, they play a wide range of roles in both innate and adaptive immune responses. These peptides are of increasing importance due to their broad-spectrum antimicrobial activity and their functions as mediators linking innate and adaptive immune responses. This review focuses on the pleiotropic biological functions and related mechanisms of action of human host defense peptides and discusses their potential clinical applications.