DOI QR코드

DOI QR Code

Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies

  • Lee, Hye-Ra (Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University) ;
  • Choi, Un Yung (Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California) ;
  • Hwang, Sung-Woo (Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University) ;
  • Kim, Stephanie (Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California) ;
  • Jung, Jae U. (Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California)
  • Received : 2016.09.21
  • Accepted : 2016.11.07
  • Published : 2016.11.30

Abstract

The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

Keywords

References

  1. Abend, J.R., Ramalingam, D., Kieffer-Kwon, P., Uldrick, T.S., Yarchoan, R., and Ziegelbauer, J. M. (2012). Kaposi's sarcomaassociated herpesvirus microRNAs target IRAK1 and MYD88, two components of the toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression. J. Virol. 86, 11663-11674. https://doi.org/10.1128/JVI.01147-12
  2. Ablasser, A., Goldeck, M., Cavlar, T., Deimling, T., Witte, G., Rohl, I., Hopfner, K.P., Ludwig, J., and Hornung, V. (2013). cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380-384. https://doi.org/10.1038/nature12306
  3. Ahmad, H., Gubbels, R., Ehlers, E., Meyer, F., Waterbury, T., Lin, R., and Zhang, L. (2011). Kaposi sarcoma-associated herpesvirus degrades cellular Toll-interleukin-1 receptor domaincontaining adaptor-inducing beta-interferon (TRIF). J. Biol. Chem. 286, 7865-7872. https://doi.org/10.1074/jbc.M110.191452
  4. Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  5. Ansari, M.A., Dutta, S., Veettil, M.V., Dutta, D., Iqbal, J., Kumar, B., Roy, A., Chikoti, L., Singh, V.V., and Chandran, B. (2015). Herpesvirus genome recognition induced acetylation of nuclear IFI16 is essential for its cytoplasmic translocation, inflammasome and IFN-beta responses. PLoS Pathog. 11, e1005019. https://doi.org/10.1371/journal.ppat.1005019
  6. Bauer, S., Kirschning, C.J., Hacker, H., Redecke, V., Hausmann, S., Akira, S., Wagner, H., and Lipford, G.B. (2001). Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98, 9237-9242. https://doi.org/10.1073/pnas.161293498
  7. Beutler, B.A. (2009). TLRs and innate immunity. Blood 113, 1399-1407.
  8. Brennan, K., and Bowie, A.G. (2010). Activation of host pattern recognition receptors by viruses. Curr. Opin. Microbiol. 13, 503-507. https://doi.org/10.1016/j.mib.2010.05.007
  9. Brubaker, S.W., Bonham, K.S., Zanoni, I., and Kagan, J.C. (2015). Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257-290. https://doi.org/10.1146/annurev-immunol-032414-112240
  10. Bussey, K.A., Reimer, E., Todt, H., Denker, B., Gallo, A., Konrad, A., Ottinger, M., Adler, H., Sturzl, M., Brune, W., et al. (2014). The gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and murine gammaherpesvirus 68 modulate the Toll-like receptor-induced proinflammatory cytokine response. J. Virol. 88, 9245-9259. https://doi.org/10.1128/JVI.00841-14
  11. Cai, X., Chiu, Y.H., and Chen, Z.J. (2014). The cGAS-cGAMPSTING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289-296. https://doi.org/10.1016/j.molcel.2014.03.040
  12. Chang, Y., Moore, P.S., Talbot, S.J., Boshoff, C.H., Zarkowska, T., Godden, K., Paterson, H., Weiss, R.A., and Mittnacht, S. (1996). Cyclin encoded by KS herpesvirus. Nature 382, 410. https://doi.org/10.1038/382410a0
  13. Cheng, G., Zhong, J., Chung, J., and Chisari, F.V. (2007). Doublestranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc. Natl. Acad. Sci. USA 104, 9035-9040. https://doi.org/10.1073/pnas.0703285104
  14. Chiu, Y.H., Macmillan, J.B., and Chen, Z.J. (2009). RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576-591. https://doi.org/10.1016/j.cell.2009.06.015
  15. Christensen, M.H., and Paludan, S.R. (2016). Viral evasion of DNAstimulated innate immune responses. Cell Mol. Immunol. 1-10.
  16. Coutermarsh-Ott, S., Eden, K., and Allen, I. C. (2016). Beyond the inflammasome: regulatory NOD-like receptor modulation of the host immune response following virus exposure. J. Gen. Virol. 97, 825-838. https://doi.org/10.1099/jgv.0.000401
  17. De Nardo, D. (2015). Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine 74, 181-189. https://doi.org/10.1016/j.cyto.2015.02.025
  18. de Zoete, M. R., Palm, N. W., Zhu, S., and Flavell, R. A. (2014). Inflammasomes. Cold Spring Harb. Perspect. Biol. 6, a016287. https://doi.org/10.1101/cshperspect.a016287
  19. Diner, B. A., Lum, K. K., and Cristea, I. M. (2015). The emerging role of nuclear viral DNA sensors. J. Biol. Chem. 290, 26412-26421. https://doi.org/10.1074/jbc.R115.652289
  20. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A., and Ganem, D. (1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J. Virol. 72, 8309-8315.
  21. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J., and Alnemri, E.S. (2009). AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509-513. https://doi.org/10.1038/nature07710
  22. Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., and Maniatis, T. (2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491-496.
  23. Franchi, L., Warner, N., Viani, K., and Nunez, G. (2009). Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227, 106-128. https://doi.org/10.1111/j.1600-065X.2008.00734.x
  24. Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., and Jung, J.U. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920. https://doi.org/10.1038/nature05732
  25. Ganem, D. (2010). KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest 120, 939-949. https://doi.org/10.1172/JCI40567
  26. Gao, D., Wu, J., Wu, Y.T., Du, F., Aroh, C., Yan, N., Sun, L., and Chen, Z.J. (2013). Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903-906. https://doi.org/10.1126/science.1240933
  27. Gregory, S.M., West, J.A., Dillon, P.J., Hilscher, C., Dittmer, D.P., and Damania, B. (2009). Toll-like receptor signaling controls reactivation of KSHV from latency. Proc. Natl. Acad. Sci. USA 106, 11725-11730. https://doi.org/10.1073/pnas.0905316106
  28. Gregory, S.M., Davis, B.K., West, J.A., Taxman, D.J., Matsuzawa, S., Reed, J.C., Ting, J.P., and Damania, B. (2011). Discovery of a viral NLR homolog that inhibits the inflammasome. Science 331, 330-334. https://doi.org/10.1126/science.1199478
  29. Hoffmann, J., and Akira, S. (2013). Innate immunity. Curr. Opin. Immunol. 25, 1-3. https://doi.org/10.1016/j.coi.2013.01.008
  30. Inn, K.S., Lee, S.H., Rathbun, J.Y., Wong, L.Y., Toth, Z., Machida, K., Ou, J.H., and Jung, J.U. (2011). Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J. Virol. 85, 10899-10904. https://doi.org/10.1128/JVI.00690-11
  31. Iwasaki, A., and Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987-995. https://doi.org/10.1038/ni1112
  32. Jacobs, S.R., Gregory, S.M., West, J.A., Wollish, A.C., Bennett, C.L., Blackbourn, D.J., Heise, M.T., and Damania, B. (2013). The viral interferon regulatory factors of kaposi's sarcoma-associated herpesvirus differ in their inhibition of interferon activation mediated by toll-like receptor 3. J. Virol. 87, 798-806. https://doi.org/10.1128/JVI.01851-12
  33. Jacobs, S.R., Stopford, C.M., West, J.A., Bennett, C.L., Giffin, L., and Damania, B. (2015). Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 1 Interacts with a member of the interferon-stimulated gene 15 pathway. J. Virol. 89, 11572-11583. https://doi.org/10.1128/JVI.01482-15
  34. Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T., and Akira, S. (2008). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601-1610. https://doi.org/10.1084/jem.20080091
  35. Kedes, D.H., Lagunoff, M., Renne, R., and Ganem, D. (1997). Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J. Clin. Invest. 100, 2606-2610. https://doi.org/10.1172/JCI119804
  36. Kerur, N., Veettil, M.V., Sharma-Walia, N., Bottero, V., Sadagopan, S., Otageri, P., and Chandran, B. (2011). IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9, 363-375. https://doi.org/10.1016/j.chom.2011.04.008
  37. Lagos, D., Vart, R.J., Gratrix, F., Westrop, S.J., Emuss, V., Wong, P.P., Robey, R., Imami, N., Bower, M., Gotch, F., et al. (2008). Toll-like receptor 4 mediates innate immunity to Kaposi sarcoma herpesvirus. Cell Host Microbe 4, 470-483. https://doi.org/10.1016/j.chom.2008.09.012
  38. Lee, M. S., and Kim, Y.J. (2007). Pattern-recognition receptor signaling initiated from extracellular, membrane, and cytoplasmic space. Mol. Cells 23, 1-10.
  39. Lee, H.R., Brulois, K., Wong, L., and Jung, J.U. (2012). Modulation of immune system by Kaposi's sarcoma-associated herpesvirus:lessons from viral evasion strategies. Front Microbiol. 3, 44.
  40. Lee, H.R., Amatya, R., and Jung, J.U. (2015). Multi-step regulation of innate immune signaling by Kaposi's sarcoma-associated herpesvirus. Virus Res 209, 39-44. https://doi.org/10.1016/j.virusres.2015.03.004
  41. Li, T., Diner, B.A., Chen, J., and Cristea, I.M. (2012). Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc. Natl. Acad. Sci. USA 109, 10558-10563. https://doi.org/10.1073/pnas.1203447109
  42. Liu, S., Grinberg, I., and Rappe, A.M. (2016). Intrinsic ferroelectric switching from first principles. Nature 534, 360-363. https://doi.org/10.1038/nature18286
  43. Lupfer, C., and Kanneganti, T.D. (2013). The expanding role of NLRs in antiviral immunity. Immunol. Rev. 255, 13-24. https://doi.org/10.1111/imr.12089
  44. Ma, Z., Jacobs, S.R., West, J.A., Stopford, C., Zhang, Z., Davis, Z., Barber, G.N., Glaunsinger, B.A., Dittmer, D.P., and Damania, B. (2015). Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc. Natl. Acad. Sci. USA 112, E4306-4315. https://doi.org/10.1073/pnas.1503831112
  45. McCartney, S.A., and Colonna, M. (2009). Viral sensors: diversity in pathogen recognition. Immunol. Rev. 227, 87-94. https://doi.org/10.1111/j.1600-065X.2008.00726.x
  46. Meyer, F., Ehlers, E., Steadman, A., Waterbury, T., Cao, M., and Zhang, L. (2013). TLR-TRIF pathway enhances the expression of KSHV replication and transcription activator. J. Biol. Chem. 288, 20435-20442. https://doi.org/10.1074/jbc.M113.487421
  47. Monie, T.P. (2013). NLR activation takes a direct route. Trends Biochem. Sci. 38, 131-139. https://doi.org/10.1016/j.tibs.2013.01.001
  48. Nador, R.G., Cesarman, E., Chadburn, A., Dawson, D.B., Ansari, M.Q., Sald, J., and Knowles, D.M. (1996). Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood 88, 645-656.
  49. O'Neill, L.A., Golenbock, D., and Bowie, A.G. (2013). The history of Toll-like receptors - redefining innate immunity. Nat. Rev. Immunol. 13, 453-460. https://doi.org/10.1038/nri3446
  50. Orzalli, M.H., and Knipe, D.M. (2014). Cellular sensing of viral DNA and viral evasion mechanisms. Annu. Rev. Microbiol. 68, 477-492. https://doi.org/10.1146/annurev-micro-091313-103409
  51. Paludan, S.R., Bowie, A.G., Horan, K.A., and Fitzgerald, K.A. (2011). Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol. 11, 143-154. https://doi.org/10.1038/nri2937
  52. Pichlmair, A., Schulz, O., Tan, C.P., Naslund, T.I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001. https://doi.org/10.1126/science.1132998
  53. Roy, A., Dutta, D., Iqbal, J., Pisano, G., Gjyshi, O., Ansari, M.A., Kumar, B., and Chandran, B. (2016). Nuclear innate immune DNA sensor IFI16 is degraded during lytic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV): role of IFI16 in maintenance of KSHV latency. J. Virol. 90, 8822-8841. https://doi.org/10.1128/JVI.01003-16
  54. Saito, T., and Gale, M., Jr. (2008). Differential recognition of doublestranded RNA by RIG-I-like receptors in antiviral immunity. J. Exp. Med. 205, 1523-1527. https://doi.org/10.1084/jem.20081210
  55. Saito, T., Owen, D.M., Jiang, F., Marcotrigiano, J., and Gale, M., Jr. (2008). Innate immunity induced by composition-dependent RIGI recognition of hepatitis C virus RNA. Nature 454, 523-527. https://doi.org/10.1038/nature07106
  56. Samols, M.A., Skalsky, R.L., Maldonado, A.M., Riva, A., Lopez, M.C., Baker, H.V., and Renne, R. (2007). Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog. 3, e65. https://doi.org/10.1371/journal.ppat.0030065
  57. Schroder, K., and Tschopp, J. (2010). The inflammasomes. Cell 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040
  58. Singh, V.V., Kerur, N., Bottero, V., Dutta, S., Chakraborty, S., Ansari, M.A., Paudel, N., Chikoti, L., and Chandran, B. (2013). Kaposi's sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J. Virol. 87, 4417-4431. https://doi.org/10.1128/JVI.03282-12
  59. Soulier, J., Grollet, L., Oksenhendler, E., Cacoub, P., Cazals-Hatem, D., Babinet, P., d'Agay, M.F., Clauvel, J.P., Raphael, M., Degos, L., et al. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276-1280.
  60. Sun, L., Wu, J., Du, F., Chen, X., and Chen, Z.J. (2013). Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786-791. https://doi.org/10.1126/science.1232458
  61. Takaoka, A., Wang, Z., Choi, M.K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T., Honda, K., et al. (2007). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501-505. https://doi.org/10.1038/nature06013
  62. Takeda, K., and Akira, S. (2004). TLR signaling pathways. Semin Immunol. 16, 3-9. https://doi.org/10.1016/j.smim.2003.10.003
  63. Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140, 805-820. https://doi.org/10.1016/j.cell.2010.01.022
  64. Unterholzner, L., Keating, S.E., Baran, M., Horan, K.A., Jensen, S.B., Sharma, S., Sirois, C.M., Jin, T., Latz, E., Xiao, T.S., et al. (2010). IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997-1004. https://doi.org/10.1038/ni.1932
  65. Veeranki, S., and Choubey, D. (2012). Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol. Immunol. 49, 567-571. https://doi.org/10.1016/j.molimm.2011.11.004
  66. Walz, N., Christalla, T., Tessmer, U., and Grundhoff, A. (2010). A global analysis of evolutionary conservation among known and predicted gammaherpesvirus microRNAs. J. Virol. 84, 716-728. https://doi.org/10.1128/JVI.01302-09
  67. West, J., and Damania, B. (2008). Upregulation of the TLR3 pathway by Kaposi's sarcoma-associated herpesvirus during primary infection. J. Virol. 82, 5440-5449. https://doi.org/10.1128/JVI.02590-07
  68. West, J. A., Gregory, S.M., Sivaraman, V., Su, L., and Damania, B. (2011). Activation of plasmacytoid dendritic cells by Kaposi's sarcoma-associated herpesvirus. J. Virol. 85, 895-904. https://doi.org/10.1128/JVI.01007-10
  69. West, J.A., Wicks, M., Gregory, S.M., Chugh, P., Jacobs, S.R., Zhang, Z., Host, K.M., Dittmer, D. P., and Damania, B. (2014). An important role for mitochondrial antiviral signaling protein in the Kaposi's sarcoma-associated herpesvirus life cycle. J. Virol. 88, 5778-5787. https://doi.org/10.1128/JVI.03226-13
  70. Wu, J.J., Li, W., Shao, Y., Avey, D., Fu, B., Gillen, J., Hand, T., Ma, S., Liu, X., Miley, W., et al. (2015). Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 18, 333-344. https://doi.org/10.1016/j.chom.2015.07.015
  71. Yang, D., Chen, W., Xiong, J., Sherrod, C.J., Henry, D.H., and Dittmer, D.P. (2014). Interleukin 1 receptor-associated kinase 1 (IRAK1) mutation is a common, essential driver for Kaposi sarcoma herpesvirus lymphoma. Proc. Natl. Acad. Sci. USA 111, E4762-4768. https://doi.org/10.1073/pnas.1405423111
  72. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730-737. https://doi.org/10.1038/ni1087
  73. Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M., Jr., Akira, S., et al. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851-2858. https://doi.org/10.4049/jimmunol.175.5.2851
  74. Zhang, G., Chan, B., Samarina, N., Abere, B., Weidner-Glunde, M., Buch, A., Pich, A., Brinkmann, M.M., and Schulz, T.F. (2016). Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc. Natl. Acad. Sci. USA 113, E1034-1043. https://doi.org/10.1073/pnas.1516812113
  75. Zhao, Q., Liang, D., Sun, R., Jia, B., Xia, T., Xiao, H., and Lan, K. (2015). Kaposi's Sarcoma-associated herpesvirus-encoded replication and transcription activator impairs innate immunity via ubiquitin-mediated degradation of myeloid differentiation factor 88. J. Virol. 89, 415-427. https://doi.org/10.1128/JVI.02591-14
  76. Zhong, W., Wang, H., Herndier, B., and Ganem, D. (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl. Acad. Sci. USA 93, 6641-6646. https://doi.org/10.1073/pnas.93.13.6641

Cited by

  1. KSHV-encoded viral interferon regulatory factor 4 (vIRF4) interacts with IRF7 and inhibits interferon alpha production vol.486, pp.3, 2017, https://doi.org/10.1016/j.bbrc.2017.03.101
  2. Differential Effects of Autophagy-Related 10 Protein on HCV Replication and Autophagy Flux Are Mediated by Its Cysteine44 and Cysteine135 vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02176
  3. Deregulation of HDAC5 by Viral Interferon Regulatory Factor 3 Plays an Essential Role in Kaposi's Sarcoma-Associated Herpesvirus-Induced Lymphangiogenesis vol.9, pp.1, 2018, https://doi.org/10.1128/mBio.02217-17
  4. Caspase-Dependent Suppression of Type I Interferon Signaling Promotes Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication vol.92, pp.10, 2018, https://doi.org/10.1128/JVI.00078-18
  5. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-39299-8
  6. Extracellular Vesicles From KSHV-Infected Cells Stimulate Antiviral Immune Response Through Mitochondrial DNA vol.10, pp.None, 2016, https://doi.org/10.3389/fimmu.2019.00876
  7. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis vol.34, pp.2, 2019, https://doi.org/10.1007/s12250-019-00114-3
  8. Evasion of I Interferon-Mediated Innate Immunity by Pseudorabies Virus vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.801257