DOI QR코드

DOI QR Code

Toll-like Receptors in Host Defense and Immune Disorders

  • Lee, Joo-Y. (Department of Life Science, Gwangju Institute of Science and Technology)
  • Published : 2007.06.30

Abstract

Toll-like receptors (TLRs) playa crucial role in initiating and regulating innate and adaptive immune responses by detecting invading microbial pathogens. TLRs can also respond to non-microbial molecules derived from damaged tissue. Accumulating evidence suggests that deregulation of TLRs results in the dysfunction of immune system and ultimately increases the risk of many immune and inflammatory diseases including infectious diseases, allergy, and autoimmune diseases. Therefore, understanding how the immune system is controlled by TLRs will provide new insight to find the way to prevent or treat infectious diseases and immune disorders.

Keywords

References

  1. Agnese, D.M., Calvano, J.E., Hahm, S.J., Coyle, S.M., Corbett, S.A., Calvano, S.E. and Lowry, S.F. (2002). Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gramnegative infections. J. Infect. Dis., 186, 1522-1525 https://doi.org/10.1086/344893
  2. Alexopoulou, L., Holt, A.C., Medzhitov, R. and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 413, 732- 738
  3. Ben-Ali, M., Barbouche, M.R., Bousnina, S., Chabbou, A. and Dellagi, K. (2004). Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin. Diagn. Lab. Immunol., 11, 625- 626
  4. Beutler, B. (2004). Inferences, questions and possibilities in Toll-like receptor signalling. Nature, 430, 257-263 https://doi.org/10.1038/nature02761
  5. Bochud, P.Y., Hawn, T.R. and Aderem, A. (2003). Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J. Immunol., 170, 3451-3454 https://doi.org/10.4049/jimmunol.170.7.3451
  6. Braun-Fahrlander, C., Riedler, J., Herz, U., Eder, W., Waser, M., Grize, L., Maisch, S., Carr, D., Gerlach, F., Bufe, A., Lauener, R.P., Schierl, R., Renz, H., Nowak, D. and von Mutius, E. (2002). Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med., 347, 869-877 https://doi.org/10.1056/NEJMoa020057
  7. Brierley, M.M. and Fish, E.N. (2002). Review: IFN-alpha/beta receptor interactions to biologic outcomes: understanding the circuitry. J. Interferon. Cytokine. Res., 22, 835-845 https://doi.org/10.1089/107999002760274845
  8. Cluff, C.W., Baldridge, J.R., Stover, A.G., Evans, J.T., Johnson, D.A., Lacy, M.J., Clawson, V.G., Yorgensen, V.M., Johnson, C.L., Livesay, M.T., Hershberg, R.M. and Persing, D.H. (2005). Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect. Immun., 73, 3044-3052 https://doi.org/10.1128/IAI.73.5.3044-3052.2005
  9. DiPerna, G., Stack, J., Bowie, A.G., Boyd, A., Kotwal, G., Zhang, Z., Arvikar, S., Latz, E., Fitzgerald, K.A. and Marshall, W.L. (2004). Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J. Biol. Chem., 279, 36570-36578 https://doi.org/10.1074/jbc.M400567200
  10. Echchannaoui, H., Frei, K., Schnell, C., Leib, S.L., Zimmerli, W. and Landmann, R. (2002). Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J. Infect. Dis., 186, 798-806 https://doi.org/10.1086/342845
  11. Eder, W., Klimecki, W., Yu, L., von Mutius, E., Riedler, J., Braun-Fahrlander, C., Nowak, D. and Martinez, F.D. (2004). Toll-like receptor 2 as a major gene for asthma in children of European farmers. J. Allergy Clin. Immunol., 113, 482-488 https://doi.org/10.1016/j.jaci.2003.12.374
  12. Eldridge, M.W. and Peden, D.B. (2000). Allergen provocation augments endotoxin-induced nasal inflammation in subjects with atopic asthma. J. Allergy Clin. Immunol., 105, 475-481 https://doi.org/10.1067/mai.2000.104552
  13. Fitzgerald, K.A., Rowe, D.C., Barnes, B.J., Caffrey, D.R., Visintin, A., Latz, E., Monks, B., Pitha, P.M. and Golenbock, D.T. (2003). LPS-TLR4 Signaling to IRF-3/7 and NF- {kappa}B Involves the Toll Adapters TRAM and TRIF. J. Exp. Med., 198, 1043-1055 https://doi.org/10.1084/jem.20031023
  14. Gao, J.J., Filla, M.B., Fultz, M.J., Vogel, S.N., Russell, S.W. and Murphy, W.J. (1998). Autocrine/paracrine IFN-alphabeta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J. Immunol., 161, 4803-4810
  15. Hagberg, L., Hull, R., Hull, S., McGhee, J.R., Michalek, S.M. and Svanborg Eden, C. (1984). Difference in susceptibility to gram-negative urinary tract infection between C3H/ HeJ and C3H/HeN mice. Infect. Immun., 46, 839-844
  16. Harte, M.T., Haga, I.R., Maloney, G., Gray, P., Reading, P.C., Bartlett, N.W., Smith, G.L., Bowie, A. and O'Neill, L.A. (2003). The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med., 197, 343-351 https://doi.org/10.1084/jem.20021652
  17. Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M. and Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll- like receptor 5. Nature, 410, 1099-1103 https://doi.org/10.1038/35074106
  18. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H. and Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 303, 1526-1529 https://doi.org/10.1126/science.1093620
  19. Hemmi, H., Kaisho, T., Takeda, K. and Akira, S. (2003). The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol., 170, 3059-3064 https://doi.org/10.4049/jimmunol.170.6.3059
  20. Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K. and Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol., 3, 196-200 https://doi.org/10.1038/ni758
  21. Hoebe, K., Georgel, P., Rutschmann, S., Du, X., Mudd, S., Crozat, K., Sovath, S., Shamel, L., Hartung, T., Zahringer, U. and Beutler, B. (2005). CD36 is a sensor of diacylglycerides. Nature, 433, 523-527 https://doi.org/10.1038/nature03253
  22. Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N. and Taniguchi, T. (2005). IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature, 434, 772-777 https://doi.org/10.1038/nature03464
  23. Iwasaki, A. and Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat. Immunol., 5, 987-995 https://doi.org/10.1038/ni1112
  24. Jiang, Z., Georgel, P., Du, X., Shamel, L., Sovath, S., Mudd, S., Huber, M., Kalis, C., Keck, S., Galanos, C., Freudenberg, M. and Beutler, B. (2005). CD14 is required for MyD88-independent LPS signaling. Nat. Immunol., 6, 565- 570 https://doi.org/10.1038/ni1207
  25. Kaisho, T., Hoshino, K., Iwabe, T., Takeuchi, O., Yasui, T. and Akira, S. (2002). Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int. Immunol., 14, 695-700 https://doi.org/10.1093/intimm/dxf039
  26. Kang, T.J. and Chae, G.T. (2001). Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol., 31, 53-58 https://doi.org/10.1111/j.1574-695X.2001.tb01586.x
  27. Kariko, K., Ni, H., Capodici, J., Lamphier, M. and Weissman, D. (2004). mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem., 279, 12542-12550 https://doi.org/10.1074/jbc.M310175200
  28. Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, P.F., Sato, S., Hoshino, K. and Akira, S. (2001). Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol., 167, 5887-5894 https://doi.org/10.4049/jimmunol.167.10.5887
  29. Kitchens, R.L., Ulevitch, R.J. and Munford, R.S. (1992). Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J. Exp. Med., 176, 485-494 https://doi.org/10.1084/jem.176.2.485
  30. Krauss, J.H., Seydel, U., Weckesser, J. and Mayer, H. (1989). Structural analysis of the nontoxic lipid A of Rhodobacter capsulatus 37b4. Eur. J. Biochem., 180, 519-526 https://doi.org/10.1111/j.1432-1033.1989.tb14677.x
  31. Krieg, A.M. (2000). The role of CpG motifs in innate immunity. Curr. Opin. Immunol., 12, 35-43 https://doi.org/10.1016/S0952-7915(99)00048-5
  32. Kurt-Jones, E.A., Popova, L., Kwinn, L., Haynes, L.M., Jones, L.P., Tripp, R.A., Walsh, E.E., Freeman, M.W., Golenbock, D.T., Anderson, L.J. and Finberg, R.W. (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol., 1, 398-401 https://doi.org/10.1038/80833
  33. Lau, C.M., Broughton, C., Tabor, A.S., Akira, S., Flavell, R.A., Mamula, M.J., Christensen, S.R., Shlomchik, M.J., Viglianti, G.A., Rifkin, I.R. and Marshak-Rothstein, A. (2005). RNAassociated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med., 202, 1171-1177 https://doi.org/10.1084/jem.20050630
  34. Lazarus, R., Klimecki, W.T., Raby, B.A., Vercelli, D., Palmer, L.J., Kwiatkowski, D.J., Silverman, E.K., Martinez, F. and Weiss, S.T. (2003). Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case-control disease association studies. Genomics, 81, 85-91 https://doi.org/10.1016/S0888-7543(02)00022-8
  35. Leadbetter, E.A., Rifkin, I.R., Hohlbaum, A.M., Beaudette, B.C., Shlomchik, M.J. and Marshak-Rothstein, A. (2002). Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature, 416, 603-607 https://doi.org/10.1038/416603a
  36. Lee, J.Y. and Hwang, D.H. (2006). The modulation of inflammatory gene expression by lipids: mediation through Tolllike receptors. Mol. Cells, 21, 174-185
  37. Lee, J.Y., Lowell, C.A., Lemay, D.G., Youn, H.S., Rhee, S.H., Sohn, K.H., Jang, B., Ye, J., Chung, J.H. and Hwang, D.H. (2005). The regulation of the expression of inducible nitric oxide synthase by Src-family tyrosine kinases mediated through MyD88-independent signaling pathways of Toll-like receptor 4. Biochem. Pharmacol., 70, 1231-1240 https://doi.org/10.1016/j.bcp.2005.07.020
  38. Lee, J.Y., Sohn, K.H., Rhee, S.H. and Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem., 276, 16683-16689 https://doi.org/10.1074/jbc.M011695200
  39. Lee, J.Y., Zhao, L., Youn, H.S., Weatherill, A.R., Tapping, R., Feng, L., Lee, W.H., Fitzgerald, K.A. and Hwang, D.H. (2004). Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Tolllike receptor 6 or 1. J. Biol. Chem., 279, 16971-16979 https://doi.org/10.1074/jbc.M312990200
  40. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973-983 https://doi.org/10.1016/S0092-8674(00)80172-5
  41. Letiembre, M., Echchannaoui, H., Bachmann, P., Ferracin, F., Nieto, C., Espinosa, M. and Landmann, R. (2005). Tolllike receptor 2 deficiency delays pneumococcal phagocytosis and impairs oxidative killing by granulocytes. Infect. Immun., 73, 8397-8401 https://doi.org/10.1128/IAI.73.12.8397-8401.2005
  42. Lorenz, E., Mira, J.P., Cornish, K.L., Arbour, N.C. and Schwartz, D.A. (2000). A novel polymorphism in the tolllike receptor 2 gene and its potential association with staphylococcal infection. Infect. Immun., 68, 6398-6401 https://doi.org/10.1128/IAI.68.11.6398-6401.2000
  43. Lorenz, E., Mira, J.P., Frees, K.L. and Schwartz, D.A. (2002). Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch. Intern. Med., 162, 1028-1032 https://doi.org/10.1001/archinte.162.9.1028
  44. Lu, M., Zhang, M., Takashima, A., Weiss, J., Apicella, M.A., Li, X.H., Yuan, D. and Munford, R.S. (2005). Lipopolysaccharide deacylation by an endogenous lipase controls innate antibody responses to Gram-negative bacteria. Nat. Immunol., 6, 989-994 https://doi.org/10.1038/ni1246
  45. Marshak-Rothstein, A. (2006). Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol., 6, 823-835 https://doi.org/10.1038/nri1957
  46. Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nat. Rev. Immunol., 1, 135-145 https://doi.org/10.1038/35100529
  47. Medzhitov, R. and Janeway, C. Jr. (2000). The Toll receptor family and microbial recognition. Trends Microbiol., 8, 452-456 https://doi.org/10.1016/S0966-842X(00)01845-X
  48. Medzhitov, R., Preston-Hurlburt, P. and Janeway, C.A. Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394-397 https://doi.org/10.1038/41131
  49. Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S. and Janeway, C.A. Jr. (1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell., 2, 253-258 https://doi.org/10.1016/S1097-2765(00)80136-7
  50. Michel, O., Kips, J., Duchateau, J., Vertongen, F., Robert, L., Collet, H., Pauwels, R. and Sergysels, R. (1996). Severity of asthma is related to endotoxin in house dust. Am. J. Respir. Crit. Care. Med., 154, 1641-1646 https://doi.org/10.1164/ajrccm.154.6.8970348
  51. Munford, R.S. and Hall, C.L. (1986). Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science, 234, 203-205 https://doi.org/10.1126/science.3529396
  52. Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., Kosugi, A., Kimoto, M. and Miyake, K. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol., 3, 667-672 https://doi.org/10.1038/ni809
  53. Ogus, A.C., Yoldas, B., Ozdemir, T., Uguz, A., Olcen, S., Keser, I., Coskun, M., Cilli, A. and Yegin, O. (2004). The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J., 23, 219- 223 https://doi.org/10.1183/09031936.03.00061703
  54. O'Brien, A.D., Rosenstreich, D.L., Scher, I., Campbell, G.H., MacDermott, R.P. and Formal, S.B. (1980). Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol., 124, 20-24
  55. Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B. and Beutler, B. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085-2088 https://doi.org/10.1126/science.282.5396.2085
  56. Pulendran, B., Kumar, P., Cutler, C.W., Mohamadzadeh, M., Van Dyke, T. and Banchereau, J. (2001). Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J. Immunol., 167, 5067-5076 https://doi.org/10.4049/jimmunol.167.9.5067
  57. Querec, T., Bennouna, S., Alkan, S., Laouar, Y., Gorden, K., Flavell, R., Akira, S., Ahmed, R. and Pulendran, B. (2006). Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med., 203, 413-424 https://doi.org/10.1084/jem.20051720
  58. Saitoh, S., Akashi, S., Yamada, T., Tanimura, N., Kobayashi, M., Konno, K., Matsumoto, F., Fukase, K., Kusumoto, S., Nagai, Y., Kusumoto, Y., Kosugi, A. and Miyake, K. (2004). Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int. Immunol., 16, 961-969 https://doi.org/10.1093/intimm/dxh097
  59. Schnare, M., Barton, G.M., Holt, A.C., Takeda, K., Akira, S. and Medzhitov, R. (2001). Toll-like receptors control activation of adaptive immune responses. Nat. Immunol., 2, 947-950 https://doi.org/10.1038/ni712
  60. Seong, S.Y. and Matzinger, P. (2004). Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol., 4, 469- 478 https://doi.org/10.1038/nri1372
  61. Smirnova, I., Mann, N., Dols, A., Derkx, H.H., Hibberd, M.L., Levin, M. and Beutler, B. (2003). Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc. Natl. Acad. Sci. USA, 100, 6075-6080 https://doi.org/10.1073/pnas.1031605100
  62. Stack, J., Haga, I.R., Schroder, M., Bartlett, N.W., Maloney, G., Reading, P.C., Fitzgerald, K.A., Smith, G.L. and Bowie, A.G. (2005). Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med., 201, 1007-1018 https://doi.org/10.1084/jem.20041442
  63. Tabeta, K., Georgel, P., Janssen, E., Du, X., Hoebe, K., Crozat, K., Mudd, S., Shamel, L., Sovath, S., Goode, J., Alexopoulou, L., Flavell, R.A. and Beutler, B. (2004). Tolllike receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 101, 3516-3521 https://doi.org/10.1073/pnas.0400525101
  64. Tabeta, K., Hoebe, K., Janssen, E.M., Du, X., Georgel, P., Crozat, K., Mudd, S., Mann, N., Sovath, S., Goode, J., Shamel, L., Herskovits, A.A., Portnoy, D.A., Cooke, M., Tarantino, L.M., Wiltshire, T., Steinberg, B.E.. Grinstein, S. and Beutler, B. (2006). The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol., 7, 156-164 https://doi.org/10.1038/ni1297
  65. Takeuchi, O., Kawai, T., Muhlradt, P.F., Morr, M., Radolf, J.D., Zychlinsky, A., Takeda, K. and Akira, S. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol., 13, 933-940 https://doi.org/10.1093/intimm/13.7.933
  66. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R.L. and Akira, S. (2002). Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol., 169, 10-14 https://doi.org/10.4049/jimmunol.169.1.10
  67. Thorne, P.S., Kulhankova, K., Yin, M., Cohn, R., Arbes, S.J. Jr. and Zeldin, D.C. (2005). Endotoxin exposure is a risk factor for asthma: the national survey of endotoxin in United States housing. Am. J. Respir. Crit. Care. Med., 172, 1371-1377 https://doi.org/10.1164/rccm.200505-758OC
  68. Tian, J., Avalos, A.M., Mao, S.Y., Chen, B., Senthil, K., Wu, H., Parroche, P., Drabic, S., Golenbock, D., Sirois, C., Hua, J., An, L.L., Audoly, L., La Rosa, G., Bierhaus, A., Naworth, P., Marshak-Rothstein, A., Crow, M.K., Fitzgerald, K.A.,Latz, E., Kiener, P.A. and Coyle, A.J. (2007). Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol., 8, 487-496 https://doi.org/10.1038/ni1457
  69. Toshchakov, V., Jones, B.W., Perera, P.Y., Thomas, K., Cody, M.J., Zhang, S., Williams, B.R., Major, J., Hamilton, T.A., Fenton, M.J. and Vogel, S.N. (2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol., 3, 392- 398 https://doi.org/10.1038/ni774
  70. Werner, M., Topp, R., Wimmer, K., Richter, K., Bischof, W., Wjst, M. and Heinrich, J. (2003). TLR4 gene variants modify endotoxin effects on asthma. J. Allergy Clin. Immunol., 112, 323-330 https://doi.org/10.1067/mai.2003.1648
  71. Woods, J.P., Frelinger, J.A., Warrack, G. and Cannon, J.G. (1988). Mouse genetic locus Lps influences susceptibility to Neisseria meningitidis infection. Infect. Immun., 56, 1950-1955
  72. Yang, Y., Liu, B., Dai, J., Srivastava, P.K., Zammit, D.J., Lefrancois, L. and Li, Z. (2007). Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity, 26, 215-226 https://doi.org/10.1016/j.immuni.2006.12.005
  73. Zhang, H., Tay, P.N., Cao, W., Li, W. and Lu, J. (2002). Integrin- nucleated Toll-like receptor (TLR) dimerization reveals subcellular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett., 532, 171-176 https://doi.org/10.1016/S0014-5793(02)03669-4