• Title/Summary/Keyword: Inlet Temperature

Search Result 1,513, Processing Time 0.032 seconds

The effect of the number of nozzle holes on the energy separation (보텍스튜브의 노즐홀수가 에너지분리에 미치는 영향)

  • 유갑종;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.692-699
    • /
    • 1999
  • The vortex tube is a sample device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. The phenomena of energy separation through the vortex tube were investigated experimentally, to see the effects of the number of nozzle holes on the energy separation. The experiment was carried out with the number of nozzle holes from 1 to 10 by varying inlet pressure and cold mass fraction. The experimental results were indicated that the effective number of nozzle holes for the best cooling performance was found as 4. Also, to find effective use in a given operation conditions, the temperature difference of cold air and the cooling capacity of vortex tube was compared. The result is that cooling capacity was more important than temperature difference of cold air.

  • PDF

Numerical Study on Flow and Heat Transfer in a CVD Reactor with Multiple Wafers

  • Jang, Yeon-Ho;Ko, Dong Kuk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • In this study temperature distribution and gas flow inside a planetary type reactor in which a number of satellites on a spinning susceptor were rotating were analyzed using numerical simulation. Effects of flow rates on gas flow and temperature distribution were investigated in order to obtain design parameters. The commercial computational fluid dynamics software CFD-ACE+ was used in this study. The multiple-frame-of-reference was used to solve continuity, momentum and energy conservation equations which governed the transport phenomena inside the reactor. Kinetic theory was used to describe the physical properties of gas mixture. Effects of the rotation speed of the satellites was clearly seen when the inlet flow rate was small. Thickness of the boundary layer affected by the satellites rotation became very thin as the flow rate increased. The temperature field was little affected by the incoming flow rate of precursors.

Numerical study on single nozzle performances for H class gas turbine based on CONVERGE CFD (H class급 가스터빈의 단일 노즐 성능에 대한 CONVERGE CFD 기반 수치 해석적 연구)

  • Kim, Jonghyun;Park, Jungsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.67-72
    • /
    • 2019
  • In this study, we investigate the non-reacting and reacting performance of single nozzle for post H class gas turbine by using commercial CFD tool, CONVERGE, based on adaptive mesh refinement. By varying swirl number and mixing length of base nozzle design. Through the numerical analysis, basic phenomena can be well described with respect to fuel concentration for non-reacting flow, temperature distribution, velocity vector and combustion outlet temperature distribution for reacting flow. However, there are rooms for improvements in model accuracy by comparing test results. Comparison between numerical analysis are planning for further study.

Analysis on Characteristics of Thermal Flow of Hot Air in Single Shell of Shell and Tube-type Heat Exchanger (쉘앤튜브형 열교환기의 단일 쉘 내 고온공기 열유동 특성 해석)

  • Young-Joon Yang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.255-263
    • /
    • 2023
  • The shell and tube-type heat exchangers have been frequently used in many industrial field because of its simple structure and wide operation conditions and so on. The purpose of this study is to investigate the flow characteristics in single shell of shell and tube-type heat exchanger according to velocity and temperature of hot air released from heat exchanger simulator through numerical analysis. As the results, the temperature was decreased in almost quadratic curve from top to bottom in single shell of the shell and tube-type heat exchanger. Further the changes of pressure and velocity in outlet according to change of inlet temperature were not observed. The cost for operating the shell and tube-type heat exchanger should be compared the supply cost of hot air with that of velocity in order to make a economic decision.

Study on Simulation of Cooling Water through Concentric Double Pipe Heat Exchanger (Concentric Double Pipe 열교환기에서 냉각수 급랭 현상의 모사에 대한 연구)

  • ANCHEOL CHOI;SEONGWOO LEE;IK HO SHIN;SUNGWOONG CHOI
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.741-747
    • /
    • 2023
  • In this study, the heat transfer characteristics were numerically analyzed to investigate the possibility of utilizing cooling water using liquid nitrogen. From the study, as the mass flow rate of the hot fluid increased, the heat transfer rate increased by 8.9-81.7%. And lowering the inlet temperature of the hot fluid resulted in increase in the heat transfer rate by 33.8-71.5%. As for the filling level of liquid nitrogen, as higher filling level led to a decrease in the outlet temperature and an increase in the overall heat transfer coefficient.

Empirical Modeling of Fouling Rate of Milk Pasteurization Process : A case study

  • Budiati, Titik;Wahyono, Nanang Dwi;Hefni, Muh.
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • Fouling in heat exchanger becomes a major problem of dairy industry and it increases the production cost. These are lost productivity, additional energy, additional equipment, chemical, manpower, and environmental impact. Fouling also introduces the risk of food safety due to the improper heating temperature which allow the survival of pathogenic bacteria in milk, introducing biofilm formation of pathogenic bacteria in equipments and spreading the pathogenic bacteria to milk. The aim of this study is to determine the fouling rate during pasteurization process in heat exchanger of pasteurized milk produced by Village Cooperative Society (KUD) "X" in Malang, East Java Indonesia by using empirical modeling. The fouling rate is found as $0.3945^{\circ}C/h$ with the heating process time ranged from 0 to 2 hours and temperature difference (hot water inlet temperature and milk outlet temperature) ranged from 0.654 to $1.636^{\circ}C$. The fouling rate depends on type and characteristics of heat exchangers, time and temperature of process, milk type, age of milk, seasonal variations, the presence of microorganism and more. This results will be used to plan Cleaning In Place (CIP) and to design the control system of pasteurization process in order to maintain the milk outlet temperature as standard of pasteurization.

Thermohydrodynamic Analysis and Pad Temperature Measurement of a Tilting Pad Journal Bearing for a Turbine Simulator (터빈 시뮬레이터용 틸팅패드 저널베어링의 열윤활 해석 및 패드 온도 측정)

  • Lee, Donghyun;Sun, Kyungho
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.112-118
    • /
    • 2017
  • Tilting pad journal bearings(TPJBs) are widely used for high speed rotating machinery owing to their rotordynamic stability and thermal management feature. With increase in the rotating speed of such machinery, an increasingly important aspect of TPJB design is the prediction of their thermal behaviors. Researchers have conducted detailed investigations in the last two decades, which provided design tools for the TPJBs. Based on these previous studies, this paper presents a thermohydrodynamic(THD) analysis model for TPJBs. To calculate pressure distribution, we solve the generalized Reynolds equation and to predict the lubricant temperature, we solve the 3D energy equation. We employ the oil mixing theory to calculate pad inlet temperature; further, to consider heat conduction via the pad, we solve the heat conduction equation for the pads. We assume the shaft temperature as the averaged oil film temperature and apply natural convection boundary conditions to the pad side and back surfaces. To validate the analysis model, we compare the predicted pad temperatures with those from previous research. The results show good agreement with previous research. In addition, we conduct parametric studies on a TPJB which was used in a gas turbine simulator system. The predicted results show that film temperature largely depends on the rotating speed and oil supply condition.

Study on the Subway Platform Thermal Environment for using Natural Energy (자연에너지 활용을 위한 지하철 승강장 열환경에 관한 연구)

  • KIM, Hoe-Ryul;KIM, Dong-Gyu;KUM, Jong-Soo;CHUNG, Yong-Hyun;PARK, Sung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.269-277
    • /
    • 2009
  • Ventilation equipment performs a central role to maintain comfort subway environment. So ventilation equipment of Busan subway line No.1 is required to improve thermal environment. In this study, conditions of thermal environment are presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway line No.1. AWS of data in comparison with the neighbouring platforms and thermal environment analysis. Thermal environment status of subway platform analysis results are as follows. 1)Daytime platform temperature was higher than outdoor temperature, but night time platform temperature was lower than outdoor temperature. 2)Train wind had effect on improving thermal comfort in platform. 3)When outdoor temperature is below $24^{\circ}C$, inlet air is able to lower than platform temperature. 4)Considering existing ventilation system, night purge systems is useful to improving platform thermal environment.

Temperature Separation Characteristics of a Vortex Tube Based on the Back Pressure of the Cold Air Exit (저온 출구의 배압조건에 따른 볼텍스 튜브의 온도분리 특성 연구)

  • Im, Seokyeon
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.166-171
    • /
    • 2016
  • Electric vehicle ownership is expanding for two reasons: its technology features have enhanced fuel economy, and the number of vehicle emissions regulations is increasing. Battery performance has a large influence on the capability of electric vehicles, and even though battery thermal management has been actively researched, specific technological improvements to battery performance are not being presented. For instance, many industrial applications utilize vortex tubes as components for refrigeration machines because of their numerous intrinsic benefits. If electric vehicles incorporate vortex tubes for battery cooling, performance and efficiency advancements are possible. This study uses a counter-flow vortex tube to investigate its temperature separation characteristics, based on the back pressure of the cold air exit and the difference between the inlet and back pressures. The experiment uses a vortex tube with the following parameters: six nozzle holes, a 20 mm inner vortex diameter (D), a 14D tube length, a 0.7D cold exit orifice diameter, and a nozzle area ratio of 0.142. The measurements prove that the temperature difference between the hot air and cold air decreased because of the flow resistance of the hot air and the backflow phenomenon at the cold air exit. The flow resistance causes the temperature difference to decrease, and the back pressure of the cold air exit influences the flow resistance. The results show that the back pressure significantly influences the efficiency of temperature separation.

A Study on the Thermal Characteristics of the Large Low Temperature Vacuum Dryer for Biological Drying (생체 건조용 대형 저온진공건조기의 열적 특성에 관한 연구)

  • 김경근;성부용;정한식;최순열;문수범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.427-434
    • /
    • 2000
  • In tradition, there have been two kinds of drying methods, which are sun drying and artificial drying. The sun drying method which has been adopted traditionally has been replaced by the hot-air drying method which is one of the most general methods of artificial drying, with its simple drying system, low initial cost of drying plant, and easy operating method. But the hot-air drying method has some defects; (1) much energy loss happens due to the discharge of hot air during the drying process, (2) control of drying rate is not easy on account of changing relative humidity of inlet air for uniform hot air temperature, (3) high temperature of foods in drying process brings about the production of low-grade drying products. Vacuum drying takes advantage of energy saving and mass production because it reduces the drying time by increasing the drying rate under low temperature condition. The aim of this paper is to develop the low temperature vacum dryer, with low initial investments and operating costs, easy operating method and trouble-free operation.

  • PDF