• 제목/요약/키워드: Inlet Temperature

검색결과 1,510건 처리시간 0.026초

메탄, 에탄 및 프로판 가스 연료의 촉매연소에 관한 매개변수 연구 (A Parametric Study on the Catalytic Combustion of Gaseous Methane, Ethane and Propane Fuels)

  • 정민승;김종민;김만영
    • 한국항공우주학회지
    • /
    • 제40권4호
    • /
    • pp.309-315
    • /
    • 2012
  • 촉매연소는 희박조건에서 작동할 수 있을 뿐만 아니라 UHC, CO, 그리고 NOx와 같은 공해물질의 배출을 억제할 수 있기 때문에 연소효율이 좋고 환경친화적인 연소방식이다. 따라서 본 연구에서는 백금계열의 촉매를 이용한 $CH_4$, $C_2H_6$, 그리고 $C_3H_8$ 연료의 촉매연소 특성에 관한 수치해석 연구를 수행하였다. 1차원 및 Langmuir-Hinshelwood 모델을 적용한 지배방정식을 설명한 후 촉매연소기의 설계변수, 즉, 입구온도, 과잉공기비, 그리고 공간속도가 촉매연소에 미치는 영향을 고찰하였다. 사용된 연료 중에서 $C_3H_8$의 화학적 구조 및 반응성 때문에 출구온도 및 전환율이 가장 높음을 확인할 수 있었다.

복합용도 건물에 적용된 400RT급 수직형 지열시스템의 입주전 성능평가 (A Performance Measurement and Evaluation of a 400RT Vertical type Geothermal System installed in a Complex Building Before Occupancy)

  • 황광일;신동걸;김중헌;신승호;정명관
    • 한국태양에너지학회 논문집
    • /
    • 제28권3호
    • /
    • pp.7-14
    • /
    • 2008
  • 400RT geothermal system which is the biggest capacity among on-operations at present in Korea is measured and evaluated on 23rd${\sim}$26th Jan. 2008 during those days building is not allowed owners and/or tenants to move in. The geothermal system is consist with vertical-typed 112 geothermal heat exchangers which are installed circle-like 1 row with 4m interval, and has 16 units of 25USRT geothermal-source heat pump(GSHP)s. And each 5 units of circulation pump are running for geothermal heat exchangers and hot water supplies. The followings are the results. The temperatures at G.L. -70m of 2 boreholes are varied quite similarly. The average temperature difference between inlet and outlet of geothermal pipes is $4.1^{\circ}C$, and that of hot water supply is $3.2^{\circ}C$, of Zone 3's each 4 GSHPs when being operated. Despite temperature fluctuations by heating loads, the average temperature difference between main pipes of inlet and outlet of geothermal heat exchangers is measured as $4.1^{\circ}C$. This study propose "Geothermal System COP" which includes not only consumed electric power by compressor but also circulation pumps and auxiliary utilities. By comparing the geothermal system COP with GSHP's performance specification, it is clear that the performances of GHSPs of this site are satisfied with the specification.

다단 후래시 증발장치내 개수로 유동의 열.수력학적 거동 (Thermo-Hydrodynamic Behaviors of Open Channel Flow Inside A Multi-Stage Flash Evaporator)

  • 설광원;이상용
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.702-715
    • /
    • 1990
  • 본 연구에서는 개수로 후래시 증발기 내부를 단순화된 형태로 가정하여 앞서 언급된 운전조건 및 유입되는 기포의 갯수유량(혹은 기공률)에 따라 증발기 내부의 속 도 및 온도분포를 수치적으로 계산해 보고자 한다. 이를 위해 유동을 정상상태의 난 류유동으로 가정하였으며, 구형의 기포에 대해 평균적인 운동 및 성장을 지배하는 방 정식을 세우고 상변화에 의한 증발량을 구하였다. 즉 입구에서 유입된 기포들이 성 장하면서 자유표면을 통해서 빠져나가는 운동 궤적을 추적함으로써 증발기 내부 유동 의 속도 및 온도분포를 구하고 이를 바탕으로 총 증발량 및 증발성능을 예측해 보고자 하는 것이다. 그리고 이렇게 계산된 결과들을 기존의 실험값과 비교하였다.

추가연료 공급,회송량에 따른 항공기내 연료온도 변화에 대한 수치해석적 연구 (A Numerical Analysis on Transient Fuel Temperatures in a Military Aircraft with Additional Fuel Supplies and Return)

  • 김영준;김창녕;김철인
    • 한국항공우주학회지
    • /
    • 제31권1호
    • /
    • pp.73-84
    • /
    • 2003
  • 항공기내 연료온도의 변화가 유한차분식에 의하여 해석되었다. 항공기의 여러 임무 가운데 근접항공지원 임무가 20% hot day 외부대기 조건과 함께 이음속 영역에서 고려되었다. 수정 Dufort-Frankel기법의 explicit방법에 의해 수치계산이 수행되었다. 항공기는 난류유동장내에 있는 것으로 가정되었다. 추가 연료공급-회송 개념을 갖는 항공기 연료시스템 모델이 고려되었다. 본 해석의 결과로써, 추가연료 공급이 증가함에 따라 연료탱크의 온도는 상승함을 보인 반면, 엔진 입구에서의 연료온도는 몇몇 비행단계 및 엔진 연료요구량이 많은 구간을 제외하고는 감소함을 보였다. 본 해석으로부터, 추가 연료공급-회송개념을 사용한 연료시스템이 엔진입구 연료온도를 낮추기 위한 효과적인 방법임을 나타났다. 또한, 연료/오일 열교환기로 흐르는 연료유동량이 연료온도 변화에 중요한 인자임이 밝혀졌다.

초임계 영역내 $CO_2$ 냉각 열전달과 압력강하 분석 (Analysis of Heat Transfer and Pressure Drop During Gas Cooling Process of Carbon Dioxide in Transcritical Region)

  • 손창효;이동건;정시영;김영률;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.65-74
    • /
    • 2004
  • The heat transfer coefficient and pressure drop of $CO_2$(R-744) during gas cooling Process of carbon dioxide in a horizontal tube were investigated experimentally and theoretically. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop consist of a receiver. a variable-speed pump. a mass flowmeter, an evaporator. and a gas cooler(test section). The main components of the water loop consist of a variable-speed Pump. an constant temperature bath. and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus The test section consists of smooth, horizontal stainless steel tube of 9.53 mm outer diameter and 7.75 mm inner diameter. The length of test section is 6 m. The refrigerant mass fluxes were 200 ~ 300 kg/($m^2{\cdot}s$) and the inlet pressure of the gas cooler varied from 7.5 MPa to 8.5 MPa. The main results were summarized as follows : The predicted correlation can evaluated the R-744 exit temperature from the gas cooler within ${\pm}10%$ for most of the experimental data, given only the inlet conditions. The predicted gas cooley capacity using log mean temperature difference showed relatively food agreement with gas cooler capacity within ${\pm}5%$. The pressure drop predicted by Blasius estimated the pressure drop on the $CO_2$ side within ${\pm}4.3%$. The predicted heat transfer coefficients using Gnielinski's correlation evaluated the heat transfer coefficients on the $CO_2$ side well within the range of experimental error. The predicted heat transfer coefficients using Gao and Honda's correlation estimated the heat transfer coefficients on the coolant side well within ${\pm}10\;%$. Therefore. The predicted equation's usefulness is demonstrated by analyzing data obtained in experiments.

열경화성 에폭시를 이용한 가스 절연 개폐기용 절연 스페이서의 사출 성형 최적화 시뮬레이션 (Simulation for Injection Molding of Insulation Spacers for Gas-Insulated Switches Using Thermosetting Epoxy Resin)

  • 배재성;이원창;지홍섭;홍병유;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.426-432
    • /
    • 2021
  • Injection molding is used in many industrial fields such as home appliances, vehicle parts, and electronic device parts because various resins can be molded, leading to mass production of complex shapes. Generally, the empirical prediction method is used to set the initial processing conditions of injection molding. However, this approach requires a lot of cost and its presented solution is not accurate. In this paper, injection molding was simulated through the MoldflowTM in order to manufacture the spacer for gas insulated switch. Through the simulation, the flow of the resin with respect to the diameter of the inlet was analyzed. It was found that the process was possible at a higher resin temperature as the diameter of the inlet increased. In addition, through thermal analysis during injection of the resin, it was confirmed that a stagnation phenomenon occurred at the insert portion during injection molding, and the temperature of the resin was higher than that of the mold. As in this paper, if the spacer is manufactured by optimizing the injection hole and the temperature of the injection process based on simulation, it is expected that the spacer can be manufactured with high productivity.

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.

고온공기를 이용한 제트확산화염의 연소특성에 관한 실험 (Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion)

  • 조은성;대야건;소림수소;정석호
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.

터빈 블레이드 온도 변화를 고려한 증기분사 가스터빈 열병합발전 시스템의 성능해석 (Performance Analysis of a Steam Injected Gas Turbine Combined Heat and Power System Considering Turbine Blade Temperature Change)

  • 강수영;김정호;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.18-24
    • /
    • 2012
  • This study simulated the operation of a steam injected gas turbine combined heat and power (CHP) system. A full off-design analysis was carried out to examine the change in the turbine blade temperature caused by steam injection. The prediction of turbine blade temperature was performed for the operating modes suggested in the previous study where the limitation of compressor surge margin reduction was analyzed in the steam injected gas turbine. It was found that both the fully injected and partially injected operations suggested in the previous study would cause the blade temperature to exceed that of the pure CHP operation and the under-firing operation would provide too low blade temperature. An optimal operation was proposed where both the turbine inlet temperature and the injection amount were modulated to keep both the reference turbine blade temperature and the minimum compressor surge margin. The modulation was intended to maintain a stable compressor operation and turbine life. It was shown that the optimal operation would provide a larger power output than the under-firing operation and a higher efficiency than the original partially injected operation.

제트확산염의 고온공기연소특성에 관한 실험적 연구 (An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames)

  • 조은성;대야건;소림수소;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF