DOI QR코드

DOI QR Code

Simulation for Injection Molding of Insulation Spacers for Gas-Insulated Switches Using Thermosetting Epoxy Resin

열경화성 에폭시를 이용한 가스 절연 개폐기용 절연 스페이서의 사출 성형 최적화 시뮬레이션

  • Bae, Jaesung (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Wonchang (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jee, Hongsub (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Hong, Byungyou (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Jaehyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 배재성 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이원창 (성균관대학교 전자전기컴퓨터공학과) ;
  • 지홍섭 (성균관대학교 전자전기컴퓨터공학과) ;
  • 홍병유 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • Received : 2021.06.27
  • Accepted : 2021.07.27
  • Published : 2021.11.01

Abstract

Injection molding is used in many industrial fields such as home appliances, vehicle parts, and electronic device parts because various resins can be molded, leading to mass production of complex shapes. Generally, the empirical prediction method is used to set the initial processing conditions of injection molding. However, this approach requires a lot of cost and its presented solution is not accurate. In this paper, injection molding was simulated through the MoldflowTM in order to manufacture the spacer for gas insulated switch. Through the simulation, the flow of the resin with respect to the diameter of the inlet was analyzed. It was found that the process was possible at a higher resin temperature as the diameter of the inlet increased. In addition, through thermal analysis during injection of the resin, it was confirmed that a stagnation phenomenon occurred at the insert portion during injection molding, and the temperature of the resin was higher than that of the mold. As in this paper, if the spacer is manufactured by optimizing the injection hole and the temperature of the injection process based on simulation, it is expected that the spacer can be manufactured with high productivity.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부(MOTIE) 및 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구입니다('20010965').

References

  1. H. S. Park and T. T. Nguyen, J. Comput. Des. Eng., 1, 256 (2014). [DOI: https://doi.org/10.7315/JCDE.2014.025]
  2. J. S. Kim, J. D. Kim, O. R. Kim, and C. O. Kwon, J. Korean Acad.- Ind. Coop. Soc., 9, 1119 (2008). [DOI: https://doi.org/10.5762/KAIS.2008.9.5.1119]
  3. Y. E. Yoo, Y. H. Seo, T. J. Je, and D. S. Choi, Korean Society for Precision Engineering, 22, 23 (2005). [DOI: https://www.koreascience.or.kr/article/JAKO200514714087006.page]
  4. W. R. Kim, J. Photopolym. Sci. Technol., 20, 30 (2009). [DOI: http://pds16.egloos.com/pds/201004/14/01/Injection_molding_trend.pdf]
  5. K. Y. Park and J. C. Park, J. Korean Soc. Manuf. Process Eng., 10, 85 (2011). [DOI: https://www.koreascience.or.kr/article/JAKO201108163172983.page]
  6. J. H. Mo, H. S. Hong, and M. Y. Lyu, Korean Soc. Technol. Plast., 10, 211 (2003). [DOI: https://scienceon.kisti.re.kr/srch/selectPOR SrchArticle.do?cn=NPAP08076264&dbt=NPAP]
  7. M. C. Quintana and P. Frontini, J. Reinf. Plast. Compos., 39, 219 (2019). [DOI: https://doi.org/10.1177/0731684419883941]
  8. Y. Zhao, T. Mattner, and D. Drummer, Int. J. Adv. Manuf. Technol., 105, 1723 (2019). [DOI: https://doi.org/10.1007/s00170-019-04306-9]
  9. S. H. Kim, J. Korean Contents Assoc., 12, 119 (2012). [DOI: https://doi.org/10.5392/JKCA.2012.12.12.119]
  10. G. D. Kim, J. Korean Soc. Precis. Eng., 24, 131 (2007). [DOI: https://www.koreascience.or.kr/article/JAKO200727500001526.page]
  11. D. V. Rosato and M. G. Rosato, Injection Molding Handbook (Springer Science+Business Media, LLC, 2000) p. 776.
  12. M. Moayyedian, K. Abhary, and R. Marian, Int. J. Adv. Manuf. Technol., 91, 3977 (2017). [DOI: https://doi.org/10.1007/s00170-017-0055-1]
  13. S. Kitayama, R. Onuki, and K. Yamazaki, Int. J. Adv. Manuf. Technol., 72, 827 (2014). [DOI: https://doi.org/10.1007/s00170-014-5697-7]
  14. J. M. Castro and C. W. Macosko, AIChE J., 28, 250 (1982). [DOI: https://doi.org/10.1002/aic.690280213]
  15. H. P. Park, B. S. Cha, J. W. Lee, Y. B. Ko, S. G. Kim, T. S. Jung, D. H. Kim, and B. O. Rhee, J. Korean Soc. Manuf. Technol. Eng., 23, 206 (2014). [DOI: https://doi.org/10.7735/ksmte.2014.23.2.206]
  16. S. Y. Eom, S. B. Seo, and K. Y. Lee, Polymer (Korea), 37, 240 (2013). [DOI: https://doi.org/10.7317/pk.2013.37.2.240]
  17. S. H. Park, J. Korean Soc. Manuf. Technol. Eng., 28, 56 (2019). [DOI: https://doi.org/10.7735/ksmte.2019.28.1.56]
  18. L. J. Lee, J. M. Ottino, W. E. Ranz, and C. W. Macosko, Polym. Eng. Sci., 20, 868 (1980). [DOI: https://doi.org/10.1002/pen.760201306]
  19. H. S. Kim, J. S. Son, and Y. T. Im, J. Mater. Process. Technol., 140, 110 (2003). [DOI: https://doi.org/10.1016/S0924-0136(03)00700-3]
  20. J. C. Park and Y. K. Seong, J. Korean Soc. Manuf. Process Eng., 9, 21 (2010). [DOI: https://www.koreascience.or.kr/article/JAKO201007750339637.page]
  21. K. H. Han, D. S. Choi, H. S. Kim, and Y. T. Im, Trans. Korean Soc. Mech. Eng. A, 25, 1575 (2001). [DOI: https://doi.org/10.22634/KSME-A.2001.25.10.1575]