DOI QR코드

DOI QR Code

A Parametric Study on the Catalytic Combustion of Gaseous Methane, Ethane and Propane Fuels

메탄, 에탄 및 프로판 가스 연료의 촉매연소에 관한 매개변수 연구

  • 정민승 (전북대학교 항공우주공학과) ;
  • 김종민 (전북대학교 항공우주공학과) ;
  • 김만영 (전북대학교 항공우주공학과)
  • Received : 2011.08.24
  • Accepted : 2012.03.12
  • Published : 2012.04.01

Abstract

Catalytic combustion is generally accepted as one of the environmentally preferred alternatives for heat and power from fossil fuels, as it has the advantage of stable combustion under very lean conditions with such low emissions as UHC, CO, and NOx. In this work, therefore, comparative numerical studies on the catalytic combustion behaviors over Pd-based catalysts have been conducted with the gaseous $CH_4$, $C_2H_6$, and $C_3H_8$. In the following, after introducing the governing equations with 1D channel and Langmuir-Hinshelwood models, numerical investigations on the catalyst performance are conducted by changing such various parameters as inlet temperature, excess air ratio, and space velocity. The numerical results show that outlet temperature and conversion of $C_3H_8$ are highest among others because of its chemical structure and reactivity.

촉매연소는 희박조건에서 작동할 수 있을 뿐만 아니라 UHC, CO, 그리고 NOx와 같은 공해물질의 배출을 억제할 수 있기 때문에 연소효율이 좋고 환경친화적인 연소방식이다. 따라서 본 연구에서는 백금계열의 촉매를 이용한 $CH_4$, $C_2H_6$, 그리고 $C_3H_8$ 연료의 촉매연소 특성에 관한 수치해석 연구를 수행하였다. 1차원 및 Langmuir-Hinshelwood 모델을 적용한 지배방정식을 설명한 후 촉매연소기의 설계변수, 즉, 입구온도, 과잉공기비, 그리고 공간속도가 촉매연소에 미치는 영향을 고찰하였다. 사용된 연료 중에서 $C_3H_8$의 화학적 구조 및 반응성 때문에 출구온도 및 전환율이 가장 높음을 확인할 수 있었다.

Keywords

References

  1. Hayes, R. E. and Kolaczkowski, S. T., "Introduction to Catalytic Combustion," Gordon and Breach Science Publishers, 1997.
  2. Cocchi, S., Nutini, G., Spencer, M. J. and Nickolas, S. G., "Catalytic Combustion System for a 10MW Class Power Generation Gas Turbine," Catalysis Today, Vol. 117, pp. 419-426, 2006. https://doi.org/10.1016/j.cattod.2006.06.042
  3. Schlegel, A., Benz, P., Griffin, T., Weisenstein, W. and Bockhorn, H., "Catalytic Stabilization of Lean Premixed Combustion : Method for Improving NOx Emissions," Combustion and Flame, Vol 105, pp. 332-340, 1996. https://doi.org/10.1016/0010-2180(95)00211-1
  4. Hong, D., Kim, C., Kim, M. Y., Lee, S. M. and Ahn, K. Y., "A Numerical Study on the Flow Characteristics in the Mixing Region of the Catalytic Combustor," Journal of Mechanical Science and Technology, Vol. 21, No. 11, pp. 1791-1798, 2007. https://doi.org/10.1007/BF03177434
  5. Dalla Betta, R. A., Schlatter, J. C., Yee, D. K. and Loffler, D. G., "Catalytic Combustion Technology to Achieve Ultra Low NOx Emissions: Catalyst Design and Performance Characteristics," Catalysis Today, Vol. 26, pp. 329-335, 1995. https://doi.org/10.1016/0920-5861(95)00155-6
  6. Dalla Betta, R. A. and Rostrup-Nielsen, T., "Application of Catalytic Combustion to a 1.5 MW Industrial Gas Turbine," Catalysis Today, Vol. 47, pp. 369-375, 1999. https://doi.org/10.1016/S0920-5861(98)00319-8
  7. Smith, L. L., Karim, H., Castaldi, M. J., Etemad, S. and Pfefferle, W. C., "Rich-Catalytic Lean-Burn Combustion for Fuel-Flexible Operation with Ultra Low Emissions," Catalysis Today, Vol. 117, pp. 438-446, 2006. https://doi.org/10.1016/j.cattod.2006.06.021
  8. Hwang, C. H., Lee, C. E. and Lee, K. O., "Numerical Investigation on Combustion Characteristics of Methane in a Hybrid Catalytic Combustor," Fuel, Vol. 83, pp. 987-996, 2004. https://doi.org/10.1016/j.fuel.2003.10.024
  9. Deutschmann, O., Maier, L. I., Riedel, U., Stroemman, A. H. and Dibble, R. W., "Hydrogen Assisted Catalytic Combustion of Methane on Platinum," Catalysis Today, Vol. 59, pp. 141-150, 2000. https://doi.org/10.1016/S0920-5861(00)00279-0
  10. Seo, Y. S., Cho, S. J., Kang, S. K. and Shin, H. D., "Numerical Studies of Catalytic Combustion in a Catalytically Stabilized Combustor," International Journal of Energy Research, Vol. 24, pp. 1049-1064, 2000. https://doi.org/10.1002/1099-114X(20001010)24:12<1049::AID-ER642>3.0.CO;2-7
  11. AVL BOOST, Aftertreatment, 2006.
  12. Turns, S. R., "An Introduction to Combustion : Concepts and Applications," McGraw-Hill, 1996.
  13. Wang, T. J., Baek, S. W. and Lee, J. H., "Kinetic Parameter Estimation of a Diesel Oxidation Catalyst under Actual Vehicle Operating Conditions," Industrial & Engineering Chemistry Research, Vol. 47, pp. 2528-2537, 2008. https://doi.org/10.1021/ie071306i
  14. Demoulin, O., Clef, B. L., Navez, M. and Ruiz, P., "Combustion of Methane, Ethane and Propane and of Mixtures of Methane with Ethane pr Propane on $Pd/\gamma$-$Al_{2}O_{3}$ Catalysts," Applied Catalysis, Vol. 344, pp. 1-9, 2008. https://doi.org/10.1016/j.apcata.2008.03.026