• Title/Summary/Keyword: %24CH_4%24

Search Result 296, Processing Time 0.025 seconds

Precipitation Decreases Methane Uptake in a Temperate Deciduous Forest (온대 낙엽 활엽수림에서의 강수량에 따른 메탄 흡수 감소)

  • Khokhar, Nadar Hussain;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.24-34
    • /
    • 2019
  • Soil moisture regulates the fate of methane ($CH_4$) in forest soil via biological and chemical processes. The instant effect of variable precipitation on $CH_4$ uptake is, however, unclear in the forest ecosystems. Here, we measured $CH_4$ flux in a temperate forest soil immediately after variable volume of water applications equivalent to 10, 20 40, and $80mm\;m^{-2}day^{-1}$ precipitation. $CH_4$ uptake was significantly higher when the water was not applied. The $CH_4$ uptake decreased significantly with increasing water application. $CH_4$ uptake was linked with air filled porosity and water filled porosity. $CH_4$ uptake response to actual precipitation intensity was in agreement with $CH_4$ uptake results in this study. $CH_4$ uptake decreased 55% at highest precipitation intensity. Since annual $CH_4$ flux is calculated with interpolation of weekly or biweekly field observations, instant effect of precipitation can mislead the interpolated annual results.

Reactivity of [Pt(dppf)Cl2] toward Simple Organic Thiolates: Preparation and Structure of [Pt(dppf)(SPh)2], [Pt(dppf)(S-n-Pr)2], and [Pt(dppf)(SCH2CH2CH2S)] (dppf = Fe(η5-C5H4PPh2)2)

  • Han, Won-Seok;Kim, Yong-Joo;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.60-64
    • /
    • 2003
  • The reactions of $[Pt(dppf)Cl_2]$ with thiophenol (PhSH), 1-propanethiol (n-PrSH), and 1,3-propanedithiol $(HSCH_2CH_2CH_2SH)$ gave the corresponding Pt-dppf-di(thiolato) compounds, $[Pt(dppf)(SPh)_2]\;(1),\;[Pt(dppf)(S-n-Pr)_2]\;(2),\;and [Pt(dppf)(SCH_2CH_2CH_2S)]\;(3)$, respectively. All products are monomeric and 4-coordinate square-planar compounds and were structurally characterized by X-ray diffraction. Electrochemical measurements (cyclovoltammograms) revealed that the oxidation potential of the dppf ligand appears to depend on the type of the group on the thiolato ligand.

Cell-meditated studies on blooming and growth of potentially ichthyotoxic Cochlodinium polykrikoides(Dinophyceae)

  • Cho, Eun-Seob
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.187-188
    • /
    • 2007
  • The fluctuations of biochemical and molecular activities III the harmful dinoflagellate, Cochlodinium polykrikoides, depending on water temperatures, were studied. In genomic DNA concentration, a similar value of 0.6 was shown at $12^{\circ}C$ and $15^{\circ}C$, but significantly increasing DNA from $18^{\circ}C$ (p<0.05), with a maximum of 1.8 at $24^{\circ}C$. After$24^{\circ}C$, the DNA significantly decreased to 0.6. Likely, the concentrations of RNA and total protein were at their highest values of 1.7 and 0.07 g $mL^1$ at $24^{\circ}C$, respectively. In contrast to ONA, RNA and total protein began to increase at $15^{\circ}C$. Oxygen availability between lower and higher temperatures was significantly different and increased from $18^{\circ}C$ according to light intensity, regardless of wavelengths (p<0.05). At $24^{\circ}C$, the highest value of the maximum electron transport rate (ETRmax), ranging from 537.9 (Ch 1) to 602.5 mol electrons $g^{-1}$ Ch1 a $s^{-1}$ (Ch 4), was also shown. Nitrate reductase (NR) and ATPase activities were at their highest values of 0.11 mol $NO_2^-g^{-1}$ Ch1 a $h^{-1}$ and 0.78 pmol 100 $mg^{-1}$ $at^2$ $4^{\circ}C$, respectively. When the cells cultured at $15^{\circ}C$, NR and ATPase activities significantly increased compared to $12^{\circ}C$ (p<0.05). In an analysis of CHN, the concentration of C and N also significantly increased (p<0.05). However, at $27^{\circ}C$, most of the molecular and biochemical movements were much lower, compared to $24^{\circ}C$. These results suggest that C. polykrikoides is very sensitive biochemical and molecular activities depending on water temperatures. Possibly, it is desirable to estimate at $18^{\circ}C$ the initiation of the massive blooming development of C. polykrikoides. In nature, it will be very difficult to maintain the massive blooms after $24^{\circ}C$ because of the possibility of significantly decreasing the molecular movement and activity of C. polykrikoides.

  • PDF

Gas Sensing Characteristics and Preparation of SnO2 Nano Powders (SnO2 나노 분말의 합성 및 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.

Methane Production of Different Forages in In vitro Ruminal Fermentation

  • Meale, S.J.;Chaves, A.V.;Baah, J.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on $CH_4$ production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at $55^{\circ}C$ and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall's buffer and rumen fluid were incubated under anaerobic conditions at $39^{\circ}C$ for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, $CH_4$ production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate $CH_4$ emissions without compromising digestion. Grazing of these two species may be a strategy to reduce $CH_4$ emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

Temporal Variability of CH4 Gas Concentration Collected in Sampling Bag (온실가스 시료 보관시간에 따른 CH4 농도 변화)

  • Hong, Yoonjung;Cho, Changsang;Kang, Seongmin;Yun, Hyun-Ki;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.477-484
    • /
    • 2016
  • In general, $CH_4$ concentrations generated in combustion facilities are known to be ppm units. In most cases, $CH_4$ samples are collected in Tedlar bags and transported to laboratories for analysis. Considering this fact, in the present study, an attempt was made to find out how long samples can be stored in cases where they are kept in bags and transported as a preliminary study for sampling. According to the results of the experiment using simulated gases (1 ppm, 5 ppm, 10 ppm) in Tedlar bag, $CH_4$ was safe up to 240 hr which is the full time. In the case of simulated gases are containing 4 kind gases ($N_2$, $CO_2$, $CH_4$, and $N_2O$). Field samples (samples of obtained by collecting combustion facilities' exhaust gases) are known to contain highly reactive substances (for example NOx, SOx, and VOCs) and may affect each other. In the present study, one site sample was secured from each of a bituminous coal combustion facility and an LNG combustion facility and whether the concentrations of $CH_4$ gas would change over time (24 hr, 96 hr, 144 hr, 192 hr) was checked. Since site samples could not be analyzed on the day of collection, an experiment was started 24 hr after the time point of sampling to analyze the samples. As with the results of analysis of the simulated gas (240 hr), the results of analysis using the site sample indicated that it could be stored for the full study period 192 hr. Therefore, it was judged that if 192 hr would be taken after sampling before the sample would be analyzed, the concentration value should be reliable.

Effects of Amifostine on Apoptosis, Cell Cycle and Cytoprotection of Human Colon Cancer Cell Lines

  • Eun Ju Lee
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.287-295
    • /
    • 2023
  • Amifostine was developed to protect cells, but it is known to induce cytotoxicity and apoptosis, and the exact mechanism is unknown. In this study, we investigated how the DNA mismatch repair (MMR) system interacts with p53 to prevent apoptosis, cell cycle arrest, and cytoprotective effects induced by amifostine. HCT116 colon cancer cells sublines HCT116/p53+,HCT116/p53+, HCT116/p53-, HCT116/E6 and HCT116+ch3/E6 cells were used for evaluation. Amifostine induced G1 arrest and increased toxicity two-fold in p53- cells regardless of MMR expression. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Amifostine induced the expression of p21 protein in both p53+ and p53- cells. As for apoptosis, compared to p53- cells, p53+ cells showed 3.5~4.2 times resistance to amifostine-induced apoptosis. HCT116+E6 with both p53 and MMR loss showed maximum apoptosis at 48 h, and HCT116+ch3/E6HCT116+ch3/E6 with p53 loss showed maximum apoptosis at 24 h. As a result, it was confirmed through in vitro experiments that amifostine-induced G1 cell cycle arrest and apoptosis are mediated through a pathway dependent on MMR and p53 protein.

Alcohol Ingestion Increases Lung Injury Induced by Cyclohexane (알코올 섭취 유무에 따른 cyclohexane의 폐 독성)

  • Kim, Byung-Ryul;Lee, Sang-Hee;Cho, Hyun-Gug
    • Applied Microscopy
    • /
    • v.35 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • To evaluate the effects of ingestion of alcoholic drinks on the toxicities of industrial compounds, cyclohexane (CH) was intraperitoneally administrated to rats (1.56 g/kg body weght), which had been ingested 15% ethanol for up to 6 weeks, 4 times by once a day and every other day. Following the last treatment of ethanol or CH, blood and lung tissues were collected during 24 hours prior to sacrifice of animals. Comparing with the control group, the lung weight per body weight (%) and the protein content in bronchoalveolar lavage fluid were increased in the ethanol-pretreated group, and the glucose-6-phosphatase activity in lung tissues was decreased in the CH-treated group. In a morphological observations, pulmonary embolus were found in the CH-treated group, whereas a partial pulmonary atelectasis and a much increase in pulmonary embolus were shown in the CH-treated group after pretreated with ethanol for 6 weeks. In conclusion, these results indicate that ethanol pretreatment could enhance CH metabolism and that CH treatment with ethanol pretreatment could induce lung injury due to the increased CH metabolism.

Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages

  • Qin, Wei-Ze;Choi, Seong-Ho;Lee, Seung-Uk;Lee, Sang-Suk;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.197-205
    • /
    • 2013
  • An in vitro study was conducted to determine the effects of defaunation (removal of protozoa) and forage sources (rice straw, ryegrass and tall fescue) on ruminal fermentation characteristics, methane ($CH_4$) production and degradation by rumen microbes. Sodium lauryl sulfate, as a defaunation reagent, was added into the mixed culture solution to remove ruminal protozoa at a concentration of 0.375 mg/ml. Pure cellulose (0.64 g, Sigma, C8002) and three forage sources were incubated in the bottle of culture solution of mixed rumen microbes (faunation) or defaunation for up to 24 h. The concentration of ammonia-N was high under condition of defaunation compared to that from faunation in all incubations (p<0.001). Total VFA concentration was increased at 3, 6 and 12 h (p<0.05~p<0.01) but was decreased at 24 h incubation (p<0.001) under condition of defaunation. Defaunation decreased acetate (p<0.001) and butyrate (p<0.001) proportions at 6, 12 and 24 h incubation times, but increased propionate (p<0.001) proportion at all incubation times for forages. Effective degradability of dry matter was decreased by defaunation (p<0.001). Defaunation not only decreased total gas (p<0.001) and $CO_2$ (p<0.01~0.001) production at 12 and 24 h incubations, but reduced $CH_4$ production (p<0.001) at all incubation times for all forages. The $CH_4$ production, regardless of defaunation, in order of forage sources were rice straw > tall fescue > ryegrass > cellulose (p<0.001) up to 24 h incubation.

Thermophilic Anaerobic Digestion of Polyhydroxybutyrate with and without Thermo-alkaline Pretreatment (열적-알칼리성 전처리 유무에 따른 폴리하이드록시부티레이트의 고온 혐기성 소화 영향 연구)

  • Jihyeon Lee;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.121-129
    • /
    • 2024
  • The study investigated the effect of thermo-alkaline pretreatment on the solubilization of polyhydroxybutyrate (PHB) and its potential to enhance of thermophilic anaerobic digestion, focusing on biochemical methane potential (BMP) and methane production rate, using two different particle sizes of PHB (1500 ㎛ and 400 ㎛). Thermo-alkaline pretreatment tests were conducted at 90 ℃ for 24 hours with varying NaOH dosages from 0-80% (w/w). BMP tests with untreated PHB exhibited methane production ranging from 150.4~225.4 mL CH4/g COD and 21.5~24.2 mL CH4/g VSS/d, indicating higher methane production for smaller particle sizes of PHB, 400 ㎛. Thermo-alkaline pretreatment tests achieved a 95.3% PHB solubilization efficiency when 400 ㎛ PHB particles were treated with 80% NaOH dosage at 90 ℃ for 24 hours. BMP tests with pretreated PHB showed substantial improvement in thermophilic anaerobic digestion, with an increase of up to 112% in BMP and up to 168% in methane production rate. The results suggest that a combined pretreatment process, including physical (400 ㎛ PHB particles) and thermo-alkaline (90 ℃, 40-80% NaOH dosage, and 24 hours reaction time), is required for high-rate thermophilic anaerobic digestion of PHB with enhanced methane production.