DOI QR코드

DOI QR Code

Tuning Behavior of (Cyclic Amines + Methane) Clathrate Hydrates and Their Application to Gas Storage

고리형 아민이 포함된 메탄 하이드레이트의 튜닝과 가스 저장 연구

  • Ki Hun Park (Department of Integrated Energy and Infra System, Kangwon National University) ;
  • Dong Hyun Kim (Department of Integrated Energy and Infra System, Kangwon National University) ;
  • Minjun Cha (Department of Integrated Energy and Infra System, Kangwon National University)
  • 박기훈 (강원대학교 신산업개발 T-EMS 융합학과 에너지자원공학전공) ;
  • 김동현 (강원대학교 신산업개발 T-EMS 융합학과 에너지자원공학전공) ;
  • 차민준 (강원대학교 신산업개발 T-EMS 융합학과 에너지자원공학전공)
  • Received : 2023.03.13
  • Accepted : 2023.04.09
  • Published : 2023.08.01

Abstract

In this study, the tuning phenomena, gas storage capacity, and thermal expansion behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were investigated for the potential applications of clathrate hydrates to gas storage. To understand the tuning behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates, 13C solid-state NMR spectroscopy was used, and the results confirmed that maximum tuning factors for the binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were achieved at 0.5 mol% and 1.0 mol% of guest concentration, respectively. The gas storage capacity of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were also checked, and the results showed the CH4 capacity of our hydrate systems was superior to that of binary (tetrahydrofuran + CH4) and (cyclopentane + CH4) clathrate hydrates. The synchrotron diffraction patterns of these hydrates collected at 100, 150, 200, and 250 K confirmed the formation of a cubic Fd-3m hydrate. In addition, the lattice constant of clathrate hydrates with cyclopentylamine and methane were larger than that with cyclopropylamine and methane due to the effects of molecular size and shape.

이 연구에서는 메탄 가스(CH4)와 함께 사이클로프로필아민(cyclopropylamine, CPrA)과 사이클로펜틸아민(cyclopentylamine, CPeA)을 이용한 하이드레이트의 튜닝효과, 가스 저장량, 그리고 하이드레이트의 열팽창 거동에 대해 논의하였다. 메탄 가스의 저장량을 극대화시킬 수 있도록 하이드레이트 튜닝 효과를 하이드레이트에 투입된 객체 분자의 농도를 달리 함에 따라 알아보았다. (CPrA+CH4) 하이드레이트의 경우, 0.5 mol% 정도의 농도에서 최대 튜닝효과가 발생하였으며, (CPeA+CH4) 하이드레이트는 기존 연구와 유사한 1.0 mol% 정도의 농도에서 최대 튜닝 효과가 발생하였다. (CPrA + CH4), (CPeA + CH4) 하이드레이트 모두 구조 II 하이드레이트를 형성한다고 알려진(테트라하이드로퓨란 + CH4), (사이클로펜탄 + CH4) 하이드레이트보다 더 많은 가스량을 저장하는 것으로 밝혀졌다. 100, 150, 200, 250 K의 조건에서(CPrA + CH4), (CPeA + CH4) 하이드레이트의 분말 X-선 회절 분석을 통해 각 온도별 격자 크기를 알아내고 그 차이를 분석하여 열팽창 거동을 분석하였다. 이에 따라, 객체 분자의 크기 차이로 인해(CPeA + CH4) 하이드레이트의 격자 상수가 더 큰 것으로 확인되었다.

Keywords

Acknowledgement

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(NRF-2021R1F1A1049420)이며, 이에 감사드립니다. 또한, 이 연구는 정부(산업통산자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구(No. 20224000000080)이며, 이에 감사드립니다.

References

  1. Sloan, E. D. and Koh, C. A., "Clathrate Hydrates of Natural Gases," CRC Press(2007).
  2. Sloan, E. D., "Fundamental Principles and Applications of Natural Gas Hydrates," Nature, 426(6964), 353-363(2003). https://doi.org/10.1038/nature02135
  3. Sloan, E. D., Koh, C. A. and Sum, A. K., "Natural Gas Hydrates in Flow Assurance," Elsevier(2011).
  4. Park, K. H., Kim, D. H. and Cha, M., "Spectroscopic Identifications of Structure II Hydrate with New Large Alcohol Guest Molecule (Cyclopentanemethanol)," Chem. Phys. Lett., 779, 138869(2021).
  5. Park, K. H., Kim, D. H. and Cha, M., "Spectroscopic Observations of Host-guest Interactions Occurring in (cyclobutanemethanol + methane) Hydrate and Their Potential Application to Gas Storage," Chem. Eng. J, 421, 127835(2020).
  6. Youn, Y., Cha, M. and Lee, H., "Spectroscopic Observation of the Hydroxy Position in Butanol Hydrates and Its Effect on Hydrate Stability," Chemphyschem, 16(13), 2876-2881(2015). https://doi.org/10.1002/cphc.201500339
  7. Seol, J., Park, J. and Shin, W., "Epoxycyclopentane Hydrate for Sustainable Hydrate-based Energy Storage: Notable Improvements in Thermodynamic Condition and Storage Capacity," Chem. Commun., 56(60), 8368-8371(2020). https://doi.org/10.1039/D0CC02195D
  8. Lee, J., Jin, Y. K. and Seo, Y., "Characterization of Cyclopentane Clathrates with Gaseous Guests for Gas Storage and Separation," Chem. Eng. J., 338, 572-578(2018). https://doi.org/10.1016/j.cej.2018.01.054
  9. Lee, Y.-J., Kawamura, T., Yamamoto. Y. and Yoon, J.-H., "Phase Equilibrium Studies of Tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 Hydrates," J. Chem. Eng. Data, 57, 3543-3548(2012). https://doi.org/10.1021/je300850q
  10. Park, K. H., Kim, D. H. and Cha, M., "Phase Equilibria and Spectroscopic Identification of Structure II Hydrates with New Hydrate-Forming Agents (Cyclopropylamine and Cyclopentylamine)," J. Phys. Chem. C, 126, 13585-13594(2022). https://doi.org/10.1021/acs.jpcc.2c03288
  11. Kim, D. Y., Park, J., Lee, J. W., Ripmeester, J. A. and Lee, H., "Critical Guest Concentration and Complete Tuning Pattern Appearing in the Binary Clathrate Hydrates," J. Am. Chem. Soc., 128, 15360-15361(2006). https://doi.org/10.1021/ja0655791
  12. Lee, S., Ok, Y., Lee, Y., Seo, D., Moon, S. and Park, Y., "Exploring the Tuning Patterns of Cyclopentyl Amine Hydrate for Potential Application to CH4 Storage," J. Environ. Chem. Eng., 10, 108402 (2022).
  13. Seo, D., Moon, S., Lee, Y., Hong, S., Lee, S. and Park, Y., "Investigation of Tuning Behavior of Trimethylene Oxide Hydrate with Guest Methane Molecule and Its Critical Guest Concentration," Chem. Eng. J., 389, 123582(2020).
  14. Shin, W., Park, S., Ro, H., Koh, D. Y., Seol, J. and Lee, H., "Phase Equilibrium Measurements and the Tuning Behavior of New sII Clathrate Hydrates," J. Chem. Thermodyn., 44, 20-25(2012). https://doi.org/10.1016/j.jct.2011.08.018
  15. Moon, S., Ahn, Y. H., Kim, H., Hong, S., Koh, D. Y. and Park, Y., "Secondary Gaseous Guest-dependent Structures of Binary Neopentyl Alcohol Hydrates and Their Tuning Behavior for Potential Application to CO2 Capture," Chem. Eng. J., 330, 890-898 (2017). https://doi.org/10.1016/j.cej.2017.08.030
  16. Park, S., Kang, H., Shin, K., Seo, Y. and Lee, H., "Structural Transformation and Tuning Behavior Induced by the Propylamine Concentration in Hydrogen Clathrate Hydrates," Phys. Chem. Chem. Phys., 17, 1949-1956(2015). https://doi.org/10.1039/C4CP03972F
  17. Kim, D. Y., Lee, J. W., Seo, Y. T., Ripmeester, J. A. and Lee, H., "Structural Transition and Tuning of Tert-butylamine Hydrate," Angew. Chem. Int. Edit., 44, 7749-7752(2005). https://doi.org/10.1002/anie.200502376
  18. Cha, M., Baek, S., Lee, W., Shin, K. and Lee, J. W., "Tuning Behaviors of Methane Inclusion in Isoxazole Clathrate Hydrates," J. Chem. Eng. Data, 60, 278-283(2015). https://doi.org/10.1021/je500568f
  19. Lee, H., Lee, J. W., Kim, D. Y., Park, J., Seo, Y. T., Zeng, H., Moudrakovski, I. L., Ratcliffe, C. I. and Ripmeester, J. A., "Tuning Clathrate Hydrates for Hydrogen Storage," Nature, 434, 743-746 (2005). https://doi.org/10.1038/nature03457
  20. Kim, D. Y., Park, Y. and Lee, H., "Tuning Clathrate Hydrates: Application to Hydrogen Storage," Catal. Today, 120, 257-261 (2007). https://doi.org/10.1016/j.cattod.2006.09.001
  21. Susilo, R., Alavi, S., Ripmeester, J. A. and Englezos P., "Tuning Methane Content in Gas Hydrates via Thermodynamic Modeling and Molecular Dynamics Simulation," Fluid Ph. Equilibr. 263, 6-17(2008). https://doi.org/10.1016/j.fluid.2007.09.015
  22. Seo, Y., Lee, J. W., Kumar, R., Moudrakovski, I. L., Lee, H. and Ripmeester, J. A., "Tuning the Composition of Guest Molecules in Clathrate Hydrates: NMR Identification and Its Significance to Gas Storage," Chem. Asian J., 4, 1266-1274(2009). https://doi.org/10.1002/asia.200900087
  23. Rodriguez-Carvajal, J., "FullProf: A Program for Rietveld Refinement and Profile Matching Analysis of Complex Powder Diffraction Patterns (ILL, unpublished)," Physica B, 192, 55-69(1993). https://doi.org/10.1016/0921-4526(93)90108-I
  24. Park, K. H. and Cha, M., "Thermal Expansion Behavior of Clathrate Hydrates with Ammonium Fluoride," J. Korean Soc. Miner. Energy Resour. Eng., 56(6), 631-638(2019). https://doi.org/10.32390/ksmer.2019.56.6.631
  25. Seo, Y.-T. and Lee, H., 13C NMR Analysis and Gas Uptake Measurements of Pure and Mixed Gas Hydrates: Development of Natural Gas Transport and Storage Method using Gas Hydrate, Korean J. Chem. Eng., 20, 1085-1091(2003). https://doi.org/10.1007/BF02706941
  26. Lv, Q. and Li, X., Raman Spectroscopic Studies on Microscopic Mechanism of CP-CH4 Mixture Hydrate, Energy Proc., 142, 3264-3269(2017). https://doi.org/10.1016/j.egypro.2017.12.501
  27. Hester, K. C., Huo, Z., Ballard, A. L., Koh, C. A., Miller, K. T. and Sloan, E. D., "Thermal Expansivity for sI and sII Clathrate Hydrates," J. Phys. Chem. B., 111, 8830-8835(2007). https://doi.org/10.1021/jp0715880